世纪电源网社区logo
社区
Datasheet
标题
返回顶部
原创

隔离型Boost电路

[复制链接]
查看: 19942 |回复: 132
1
boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2017-5-9 11:51:16
    开关电源有三大基本拓扑BuckBoostBuck-Boost,其中Buck的隔离型为正激电路,Buck-Boost的隔离型为反激电路,唯独Boost拓扑的隔离型电路不常见。Boost是升压型拓扑输入电流是连续的非常适合作为输入级比如用作连续模式的PFC电路,缺点是只能升压(输出>=输入),像常见的PFC应用一般输出电压是380-420V,如果应用中需要的是低压输出那么只能再接入降压电路。如果有隔离型Boost电路通过变压器匝比调节,低压应用就容易解决了。
zhaoyg0825
  • 积分:1372
  • |
  • 主题:42
  • |
  • 帖子:301
积分:1372
LV6
高级工程师
  • 2017-5-9 12:11:15
 
来个图啊
Coming.Lu
  • 积分:50193
  • |
  • 主题:39
  • |
  • 帖子:16001
积分:50193
版主
  • 2017-5-9 12:42:17
 
SEPIC 也可以。
boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2017-5-9 13:23:16
 
Sepic电路是一种实现方法,如下面两种电路
sepic电路.jpg
                        图1-1 隔离型Sepic电路
这种电路有什么缺点?
boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2017-5-9 14:02:43
 
图1-1(b) 电容C26的这种接法使电磁隔离变为了电容隔离,如果Vout就是最终输出端那么要采用安规电容了。
在效率上Sepic电路不及Boost电路,隔离的Sepic效率也不会比隔离的Boost电路高。
Sepic电路是靠电容传递能量的,目前的电容性能还及变压器。
在环路控制上Sepic电路要比Boost电路难,不过PFC应用对环路要求不高,可能问题不大。
隔离型Sepic电路要处理变压器的漏感问题,隔离型Boost电路可能没有漏感问题。
······
Coming.Lu
  • 积分:50193
  • |
  • 主题:39
  • |
  • 帖子:16001
积分:50193
版主
  • 2017-5-9 14:26:03
 
其实,有个电流馈电推挽(也可以把推挽换成全桥),这个更像是隔离的boost。
boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2017-5-9 14:35:18
 
其实,想探讨的就是半个电流馈电推挽(对称驱动电流型推挽/全桥变换器),特性同Boost一模一样,只多了个变压器隔离。
Coming.Lu
  • 积分:50193
  • |
  • 主题:39
  • |
  • 帖子:16001
积分:50193
版主
  • 2017-5-9 14:45:11
 
那个电流馈电,我是不玩了,玩不转。
10+年前,被它玩死了。
boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2017-5-9 15:02:17
 
是不是没有专用芯片、参考资料少啊?
Coming.Lu
  • 积分:50193
  • |
  • 主题:39
  • |
  • 帖子:16001
积分:50193
版主
  • 2017-5-9 16:13:12
 
不是芯片问题,当时是MCU做的。
是一些不理想参数的问题,分布参数之类。
boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2017-5-9 16:49:34
 
貌似问题还挺多,后面再一点点解决。
Coming.Lu
  • 积分:50193
  • |
  • 主题:39
  • |
  • 帖子:16001
积分:50193
版主
  • 2017-5-9 16:58:50
 
你可以试试看啊。
也许你能想到好的解决办法呢。
boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2017-5-9 17:06:57
 
如果有没发现或没想到的问题还有劳版主提点一下。
Coming.Lu
  • 积分:50193
  • |
  • 主题:39
  • |
  • 帖子:16001
积分:50193
版主
  • 2017-5-9 17:22:56
 
用了,遇到问题再上来讨论呗。
很多问题是要做过了,才能知道的。
就像我之前看书,发现这个拓朴真是好,做了才知道好多问题不好解决。
iceman_sg
  • 积分:390
  • |
  • 主题:3
  • |
  • 帖子:35
积分:390
LV4
初级工程师
  • 2017-6-12 10:25:23
 
这个拓扑在调试时会有哪些问题呢?
TI官方demo
有个2KW的双向DCDC boost部分就是用的这个
编号tida-00951
Coming.Lu
  • 积分:50193
  • |
  • 主题:39
  • |
  • 帖子:16001
积分:50193
版主
  • 2017-6-12 10:29:50
 
自己试试吧,讲多没用。
boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2017-5-9 17:44:45
 
这种隔离型Boost电路的原理图如下:
电流型推挽变换器.jpg
                    图1-2  电流型推挽变换器
常见的推挽电路电感在次级属电压型推挽电路,图1-2的电路是电压型推挽的对偶电路既电流型推挽电路。电压型推挽电路的占空比是0-50%,根据对偶性电流型推挽的占空比是50%-100%。
可能有人会觉的用两颗MOS管增加成本,这种隔离型的Boost电路要么选两颗MOS管要么选一颗MOS管加一个电容其它的好像没办法实现了。用两颗MOS管来分担一颗MOS管的功率成本上不一定会增加,变压器同理。

boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2017-5-9 19:00:20
 
对这个隔离Boost电路进行DC/DC仿真,结果如下(匝比n=1)
直流增益曲线.jpg
                         图1-3 直流增益曲线
图1-3的仿真结果可以推出这种隔离型Boost电路的直流增益为Uo=0.5/(1-D)*n*Uin(n=Np/Nc)。当匝比n=1时这种隔离Boost的增益曲线是非隔离的1/2。
这种电路采用固定周期的PWM控制比较容易实现,只要两个MOS管交错导通就可以。在PFC应用中最理想的是采用PFM-PWM变频控制。对于不停变化的周期,如何控制两路信号的占空比、如何控制两路信号的交错时间是个需要解决的问题。不知道是否有专用芯片,可以先试着设计一个电路让普通的单通道PFM-PWM信号转换为交错的双通道信号输出。

boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2017-5-10 19:43:41
 
这个隔离Boost电路可由Boost+Buck演变而来,见下图
演变过程.jpg
                              图1-4  Boost+Buck及隔离Boost电路
在两级电路(a)中,左边的电感、MOS开关和二极管构成Boost电路,右边的电路是一个占空比为50%的“正激”电路实现“理想变压器”的功能。
图(b)是把图(a)的两级合二为一,从图中看占空比信号也被合二为一变成了两路占空比始终大于50%的信号。
图(b)的这种隔离Boost电路存在两个问题,一个是漏感的问题一个是磁偏的问题。图(a)的电路如果在初级的Boost电路后面加一个小电容(变压器采用双线并绕)就可以实现漏感的无损吸收,而图(b)的电路却并不那么容易,所以要达到高的性能这种电路还需再改进一下。

caichengchao
  • 积分:1792
  • |
  • 主题:9
  • |
  • 帖子:123
积分:1792
LV6
高级工程师
  • 2017-5-10 09:04:22
 
了解了
nc965
  • 积分:92939
  • |
  • 主题:115
  • |
  • 帖子:27160
积分:92939
版主
  • 2017-5-10 20:13:16
 
基本拓扑只有BuckBoost两个,Buck-Boost可归结为Boost,因此反激也归结为Boost,拓扑树分类是完整的,没有什么遗漏。详情可见此贴:



boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2017-5-10 21:41:44
 
道生一,一生二,二生三,三生万物。您是二生三的境界,我想我等水平只要明白三生万物就够用了。
greendot
  • 积分:31525
  • |
  • 主题:0
  • |
  • 帖子:8687
积分:31525
LV12
专家
  • 2017-5-11 15:28:16
 
“Buck-Boost可归结为Boost” - 此话怎讲 ?归结的法则为何?这法则具普遍性乎?

nc965
  • 积分:92939
  • |
  • 主题:115
  • |
  • 帖子:27160
积分:92939
版主
  • 2017-5-11 20:40:50
 
归结的法则就是可以用同一个数学表达式表达的所有事物。这法则具普遍性。
greendot
  • 积分:31525
  • |
  • 主题:0
  • |
  • 帖子:8687
积分:31525
LV12
专家
  • 2017-5-12 12:13:50
 
有点好奇,李版演示一下?
nc965
  • 积分:92939
  • |
  • 主题:115
  • |
  • 帖子:27160
积分:92939
版主
  • 2017-5-12 14:43:54
 
爱因斯坦质能公式所表达的所有事物,归结为物质世界,否则,归结为暗物质,暗能量,或者精神世界。
greendot
  • 积分:31525
  • |
  • 主题:0
  • |
  • 帖子:8687
积分:31525
LV12
专家
  • 2017-5-12 16:01:48
 
我意思是想知道,经过什么推理手段,或你说的数学表达式,得到Buck-Boost可归结为Boost的结论?
nc965
  • 积分:92939
  • |
  • 主题:115
  • |
  • 帖子:27160
积分:92939
版主
  • 2017-5-12 17:40:13
 
buck-boost输出电压,简单等于boost输出电压减去输入电压,
意思是,减去的这个电压如果是0,它就是boost。减去的这个电压也可能是其它电压,它还是boost。如果减去的碰巧等于输入电压,你虽然可以叫它buck-boost,但它实际上还是boost。

greendot
  • 积分:31525
  • |
  • 主题:0
  • |
  • 帖子:8687
积分:31525
LV12
专家
  • 2017-5-12 18:55:51
 
1. 这个加减输入电压的"法则",能否用在别处?
2. DCM工况时,看看你的结论是否成立?
nc965
  • 积分:92939
  • |
  • 主题:115
  • |
  • 帖子:27160
积分:92939
版主
  • 2017-5-12 19:03:15
 
任何拓扑都可以在输出叠加一个电压源,不改变拓扑,与模式无关。也不会因为叠加的电压源是个特殊的电压源而变成另外一个拓扑。
greendot
  • 积分:31525
  • |
  • 主题:0
  • |
  • 帖子:8687
积分:31525
LV12
专家
  • 2017-5-12 19:14:21
 
李版真是择善而固执,佩服。
nc965
  • 积分:92939
  • |
  • 主题:115
  • |
  • 帖子:27160
积分:92939
版主
  • 2017-5-13 07:57:05
 
郭工都说你精于计算,这种事搞点模型自己验算一下应该就说明问题了,凭主观感觉去否定或肯定某个意见不是你的风格哈。
或者,给你个确凿的证据,只需简单验算一下即可:
09.png

这两个拓扑都是组合拓扑,前者是两个Boost叠加,后者可看成是一个Boost与一个buck-boost叠加。但这两个拓扑是完全等效的,他们是一种拓扑(对称交联boost)的两种等效接法
boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2017-5-13 12:39:51
 
把电路换成比较习惯的画法
交叉线.jpg
左边的电路是两个Boost串联电路,右边一个Boost和一个Buck-Boost电路的串联电路,这两个电路如果占空比相同的话输出电压好像是不一样的,这个等效该如何解读?
nc965
  • 积分:92939
  • |
  • 主题:115
  • |
  • 帖子:27160
积分:92939
版主
  • 2017-5-13 13:28:52
 
一样不一样,计算一下才能确定,凭感觉判断又可能出错。这个电路讨论过多次了,工程上也有应用。
greendot
  • 积分:31525
  • |
  • 主题:0
  • |
  • 帖子:8687
积分:31525
LV12
专家
  • 2017-5-13 12:42:26
 
我都服了,不如李版开个新帖,等各路大神讨论讨论 ?
nc965
  • 积分:92939
  • |
  • 主题:115
  • |
  • 帖子:27160
积分:92939
版主
  • 2017-5-14 09:48:53
 
与楼主的主题相扣,提出拓扑族的完整性,隔离拓扑也可分为boost和buck,大部头的书一本一本的出,都是这样子的,实在没有必要讨论。还是不干扰楼主继续讨论为好。
greendot
  • 积分:31525
  • |
  • 主题:0
  • |
  • 帖子:8687
积分:31525
LV12
专家
  • 2017-5-15 22:27:39
 
只是觉得Buck-boost可以归结为Boost这个重要的结论,不应隐没在个别的话题帖里,应该给予重视,有个专属的帖子。
nc965
  • 积分:92939
  • |
  • 主题:115
  • |
  • 帖子:27160
积分:92939
版主
  • 2017-5-15 22:44:43
 
这也不算啥重要结论,buck-boost可以归结为boost这句话的意思是,也可以不归结可以就是两可的意思。
greendot
  • 积分:31525
  • |
  • 主题:0
  • |
  • 帖子:8687
积分:31525
LV12
专家
  • 2017-5-16 11:23:15
 
我是持反对意见的,就不知其他坛友的看法,不过也许没人有兴趣去讨论,也罢。
至于34楼的两个线路,简单推导可知,外观一样,内里不同,例如上下路功率不对称,很难说是等效。
nc965
  • 积分:92939
  • |
  • 主题:115
  • |
  • 帖子:27160
积分:92939
版主
  • 2017-5-16 12:20:28
 
在19楼那个老帖里,你是持支持意见的。但是这个事不重要,重要的是工程上的应用。除了反激这样的拓扑勉强可以与Buck-boost有所对应之外,隔离拓扑按BOOST和BUCK分类足矣。楼主想把隔离拓扑也分为三类,说是其中隔离Boost有缺失,有点费力不讨好的意味,故此提醒。
boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2017-5-11 18:47:26
 
如果把图1-4(b)中的一个MOS管换成二极管则初级变成了熟悉的带复位绕组正激结构
正激.jpg
                      图1-5 初级为“绕组复位正激”电路
原设想初级采用双线并绕漏感不是问题,实际情况由于输入多了个PFC电感,漏感能量无法回到Uin中(电路中一般不允许两个电感直接串联)在MOS管会产生很大的电压应力。如果加RCD吸收那么这个电路就一点优势都没有还不如采用两级结构的性能高,这种电路估计只能等到将来有一天出现了无漏感变压器后才能得到很好的应用。

boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2017-5-11 19:04:35
 
  在两级电路中带变压器隔离的一般都是放在后级,比如PFC+正激,比如图1-4(a),如果把两级互换位置既隔离的在前PFC电路在后,这样输入级就不存在电感而变压器的漏感能量可以回到Uin中去。
  其实变换之后电路并没什么优势,由于MOS开关管分列变压器两侧也没办法合二为一,不过如果把整流桥融入到变换后的电路中是否可以提升电路的性能?电路见下图。
交流电子变压器.jpg
                         图1-6  整流、变压一体电路

boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2017-5-12 19:46:57
 
图1-6的电路按正负半周可分解为两部分,
正负半周.jpg
                                            图1-7 正负半周等效图
如图1-7,当输入电压为正半周时上边的两颗MOS管一直导通,省略掉MOS管得到图(a)的等效结果。当输入电压为负半周时下边的两颗MOS管一直导通,省略掉MOS管后得到图(b)的等效结果。图(a)和图(b)是完全相同的两个电路。

boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2017-5-12 20:10:02
 
图1-7中的电路转换成比较熟悉的等效电路画法如下:
全桥电路.jpg
                          图1-8 全桥电路
图1-6的整流、变压一体电路相当于是由上面的两个全桥电路串联构成的。
图1-8的这种全桥电路通常是采用定频的PWM模式控制,仿真的时候发现如果采用变频控制会得到非常不错的软开关特性——从轻载到满载全程软开关。某些特性同LLC电路很像,不过电流波形是锯齿波,不仅零电压开还零电压关比LLC更软。

boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2017-5-13 19:29:30
 
电路中的波形情况如下:
运行电流.jpg
                              
                                       图2-1-1 全桥软开关运行波形
关断时刻的局部放大图如下:
零关.jpg
                                       图2-1-2 零电压关断波形
全桥软开关是利用MOS管的寄生电容与漏感的准谐振来实现软开关,与LLC相似之处是零电压开启,输出电流为漏感电流减去励磁电感电流,都为变频控制。不同之处是LLC电路的谐振电感串在电路中励磁电感可以发挥作用电路中有两个谐振频率,波形为正弦波。
图2-1-1显示这种电路是零电压开启的(开启前电流反向)关断时也接近零电压关断见图2-1-2。这种电路的最大优点是全程软开关,无论输入电压、输出负载如何变化始终保持软开关,最大的缺点是重载低频频轻载高频应当是属于串联准谐振软开关类。

boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2017-5-13 19:47:23
 
如果在输出侧加一个滤波电感(正统的全桥电路)则可以把电路中的三角波变为梯形波,从而降低峰值损耗。
题型波.jpg
                              
                                        图2-1-3 “准谐振”梯形波
图2-1-3和图2-1-1是相同的输出电压、功率,实际电路中前者的效率要更高一些。

boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2017-5-21 12:18:28
 
电路还是全桥电路只是改变了控制方式(变频控制)就可实现全程软开关,变频全桥的直流特性曲线如下:
DC特性曲线.jpg
                              
                               图2-2-1 变频全桥的DC特性
这个同LLC电路的的ZVS区域1比较接近,见下图
LLC直流特性曲线.jpg
                              图2-2-2 LLC的DC特性
LLC电路的ZVS区不是零关断有关断损耗,变频全桥是零关断效率应当要比LLC电路高。同LLC电路一样,变频全桥不适合宽输入 、宽负载变化的应用场合,否则会产生极宽的频率变化范围。

boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2017-5-21 12:47:44
 
理想中的软开关应当是全程软开关、如硬开关一般易于控制、频率变化范围要小,不过目前为止还未见过能达到上述要求的软开关。
全谐振太软不可控,准谐振软硬结合不过不能全程软开关(否则会产生较大的应力),上面提到的变频全桥软开关(属串联谐振)频率变化的范围太宽。
要实现理想软开关有一种方法是采用可变谐振电感或谐振电容(电可控),不同的工况可调节相应的谐振参数以实现最佳工作状态。

boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2017-5-21 14:16:35
 
不知道市面上是否有适合的电控可变电感和可变电容,现有的条件有源钳位软开关属可变电容类型不过只能实现一个容值可变,可变电感可采用饱和电感方案,见下图
饱和电感.jpg
                              
                                  图2-3 饱和电感软开关
如上图2-3轻载时三个电感串联,谐振频率低、开关频率低有益于降低轻载损耗,中载时电流大于0.2A,2mH的电感饱和电路中电感量变为800uH+100uH,重载时800uH电感饱和电路中的感量变为100uH。现在的饱和电感效率好像还比较低,这个方案或许要等到将来才能实现。
目前最可行的方案是采用多路并联的方式,比如将相对比较简单的QR模式反激分为三路并联,一路负责轻载、二路负责中载、三路负责重载。
满载时3路都工作不会产生冗余增加成本,轻载时只让一路工作(一路感量较大)因采用小功率MOS管所以可降低驱动损耗提高轻载效率,又因电路分为三部分所以可以使电路始终工作在第一谷底导通状态而不产生过宽的频率变化范围。电路如下:
三路组合QR电路.jpg

                         图2-4 三路并联QR反激电路

boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2017-5-22 11:49:25
 
下面的是两路并联QR反激电路从轻载到满载的波形:
组合QR轻载到满载.jpg
                              
                               图2-5 两路并联QR反激轻载到满载变化波形
功率与频率的关系表如下:
功率与频率表.jpg
                             表2-5-1 功率与两路开关频率的关系表
通过两路并联组合上述QR模式软开关的频率范围在宽负载条件下可控制在22KHz-94KHz之间。如果并联的路数多则频率变化范围更小。

boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2017-5-22 12:35:28
 
图2-5 波形展开如下:
细节波形.jpg
                              
                                图2-6 双路QR轻载到满载波形展开图

boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2017-5-22 13:06:38
 
双路QR从满载到轻载的波形如下:
满载到轻载.jpg
                              
                                 图2-7 双路QR满载到轻载波形
这种多路并联软开关的控制电路并不复杂至少比NCP1380芯片要简单,前面提到要降低频率变化范围需增加并联路数(并联的每一路参数不同),无限多路并联并不现实,有一种方法可采用二进制数字模式来实现数字组合式软开关电路。上面的双路并联QR反激也是两位数字组合式软开关电路,共有三种组合模式,如果采用三路并联则可实现七种组合模式,这样就可以用数字组合来替换频率变化。

boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2017-5-25 14:33:28
 
言归正传接下来继续去寻找一种理想的隔离型Boost电路,首先分析隔离型的Buck电路(正激)和隔离型的Buck-Boost电路(反激)的实现过程。
正激反激演化.jpg
                              
                                 图3-1 非隔离到隔离电路的演化
如图3-1所示,正激和反激电路都相当于把非隔离的Buck、Buck-Boost电路的开关管换成了隔离变压器结构(图中虚线方框),隔离型Boost电路是否可以也按照这种方式演化?

boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2017-5-25 15:12:42
 
遗憾的是Boost电路并不能像前两种电路那样去演化,主要是受结构所限Boost电路中储能电容的能量不能通过隔离变压器传递到次级,多增加一个开关可以解决这个问题,见下图。
隔离有源钳位Boost.jpg
                              
                                     图3-2 有源钳位隔离Boost电路
图3-2(b)增加一个开关管后(也可看做二极管换成同步整流管)储能电容中的能量就可以通过隔离变压器传递到次级负载上,图(c)跟图(b)完全等效所以换个角度储能电容就变成了钳位电容,之前图1-2隔离Boost电路的漏感问题就可以解决了。
为解决漏感而增加钳位电路后这种电路相对于二级结构就没有什么优势了,所以要换个思路来解决。

boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2017-5-25 15:25:09
 
新的思路是保留开关管不变而是在后面的电路上做文章,比较典型的是Boost-FLYback电路,见下图
Boost-FLYback.jpg
                              
                       图3-3 Boost-FLYback电路
这个电路分解开来就是一个Boost电路+一个FLYback电路,二者共用一个MOS开关管。电路的缺点是多了一个二极管D1,漏感的问题依然存在还需增加吸收电路(如RCD)。

boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2017-5-25 15:58:58
 
理想的隔离型Boost电路应当是效率高、元件少、控制简单,这种理想中的拓扑貌似诞生了。

boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2017-5-25 16:38:08
 
这种理想型的拓扑如下:
钳位绕组.jpg
                              
                          图4-1 带钳位绕组的隔离型Boost电路
图(a)是一个Boost电路和反激电路的组合,因有钳位绕组所以漏感中的能量会被无损吸收,又因初级采用双线并绕漏感不会影响到前级的Boost功能。
图(b)是一个Boost电路和正激电路的组合,同图(a)的区别在于变压器是按正激设计及同名端的位置不同。在图(b)中续流电感为变压器的漏感,因正激等同于隔离的Buck电路所以图(b)也可以看做是隔离Cuk或Sepic电路(解决漏感问题)。

boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2017-5-26 19:44:00
 
搭了个实验电路测试的效果不是很理想,后将电路做了点调整见下图
改版1.jpg
                              
              图4-2 带钳位绕组隔离Boost -2
图4-2这个电路对漏感的吸收略有改善(变压器的漏感设计的比较大),实测波形如下
新建文件9.jpg
              图4-3 隔离Boost-2测试波形
从理论上分析图4-1和图4-2的原理差不多,但实测结果相差很多而且图4-3的结果也没有达到最理想状态,那么这种电路是不可行还是某些关键问题没有被发现?

nc965
  • 积分:92939
  • |
  • 主题:115
  • |
  • 帖子:27160
积分:92939
版主
  • 2017-5-27 10:38:44
 
感觉你这样玩,越玩越走样了,哪里还是单纯的Boost?
注意开关一端的结构,一定要是拓扑吸收(能量传递)结构,否则拓扑就可能是谐振拓扑。
boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2017-5-27 11:17:21
 
初级的那个电容就是母线电容,相当于Boost电路的二极管和电容互换了位置。波形中出现的震荡是因为钳位绕组的能量用尽了,稍微调制下参数的结果: 实验波形1.jpg

                      图4-3-1 实验波形2
这个电路的吸收功能有起到作用,没加吸收的Vds电压会飙升几倍。实验中也发现二极管不能瞬间正向导体(用的是快恢复二极管)会产生一个小尖峰,另外怀疑是初级双线并绕绕的不够好,初级的两个绕组没有达到“完全耦合”的效果。
nc965
  • 积分:92939
  • |
  • 主题:115
  • |
  • 帖子:27160
积分:92939
版主
  • 2017-5-27 11:38:05
 
初级双线并绕绕只是理论上的,实际都绕不好,你要按绕不好考虑问题。
boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2017-5-27 15:49:57
 
将图4-1电路的Boost电感值降低(之前的电感太大功率太小),占空比从10%-60%变化测试的Vds波形如下:
10%.jpg
                              
                      图4-4-1 占空比10%
20%.jpg
                      图4-4-2 占空比20%
30%.jpg
                      图4-4-3 占空比30%
40%.jpg
                      图4-4-4 占空比40%
50%.jpg
                      图4-4-5 占空比50%
60%.jpg
                      图4-4-6 占空比60%
从测试结果看这种电路可以达到对漏感吸收的预期效果,从理论上将这种电路占空比不能超过50%图4-4-6也验证了这一点,如果需要占空比超过50%那么设计时钳位绕组的圈数就不能等于主绕组圈数。

真武阁
  • 积分:5801
  • |
  • 主题:25
  • |
  • 帖子:1549
积分:5801
LV8
副总工程师
  • 2017-6-2 14:18:28
 
boost和buck-boost的区别就是:       boost的  Vout=V电感+Vin,                                                  buck-boost的  Vout=V电感

而隔离变压器只能传递V电感这部分功率,Vin并不能传递过去,所以不可能有boost的隔离型。


boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2017-6-2 15:50:16
 
就图1-2的电路而言当占空比=50%时Vout=Vin,当占空比>50%时Vout=Vin+V电感,换个角度50%占空比的部分为正激直驱,大于50%的部分为电感传递能量。16楼仿的直流增益Uo=0.5/(1-D)*n*Uin(n=Np/Nc)也证明了这种电路是隔离的Boost电路(假设不受漏感影响)。
boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2017-6-4 15:08:39
 
把电路的次级换成桥结构后可将“正、反激电路”合二为一,见下图。
桥输出原理图.jpg
                              
                             图5-1 兼容“正、反激”的隔离Boost电路
改进后的电路可实现更高功率的输出。

boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2017-6-4 15:27:26
 
图5-1这种电路的工作过程如下:
工作分析.jpg
                              
                                    图5-2 工作过程分析
图5-2当开关打开时Boost电感L1储能,电容Uc驱动变压器T1向负载传递能量。
当开关关闭时电感L1中的能量分为两路,一路通过变压器T1直接传递到负载另一路向电容Uc充电,由于初级的双线并绕结构等效为向2个串联Uc电容充电,也因初级双线并绕结构漏感成为滤波电感而得到利用。

boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2017-6-4 16:10:21
 
电路在控制上可有两种控制方式,一种是50%占空比的的变频控制,另一种是PWM控制模式(或PWM-PFM)。50%占空比的变频控制可以等效为下面的电路:
                              
50%等效电路.jpg                                  
                          图5-3 变频模式时的等效电路
当占空比为50%时图5-3和图5-1的电路是完全等效的, 所以也可以通过图5-3的电路来理解图5-1的电路。
图5-1电路的缺点是参数要匹配好不然会发生震荡,MOS管要承受2倍Uin电压跟正激电路特性一样。

boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2017-6-4 16:28:01
 
当采用pwm控制模式时电路也可等效5-3,不过后级的两个MOS管控制方式上略有不同,下面的是图5-1电路实现PFC功能的仿真波形。
PFC仿真波形.jpg
                              
                                         图5-4  PFC仿真波形
同非隔离Boost电路实现的PFC功能一样,输出电压中含有工频纹波。

boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2017-6-9 15:11:00
 
把图4-1(a)电路中的电容放置低端可以得到另一种完全等效的电路
电容放下面的原理图.jpg
                              
                              图5-5 电容接地的隔离Boos电路
这种电路对漏感的吸收取决于初级双线并绕的耦合效果,实际用双线并绕、双绞线、利兹线测试过,漏感只能达到0.1%左右(业余水平手工绕制)。另外不知道有没有像漆包线一样规格的同轴电缆线,想试试同轴电缆线的效果。

boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2017-6-26 13:17:07
 
手上有几颗块NCP1207的板子准备改装成图5-5的电路测试一下性能。另外准备测试下面的这种具有漏感吸收功能电路的动态性能。
吸收漏感.jpg                           
               图5-6 带无损吸收功能的“反激”电路
boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2017-6-26 20:38:18
 
电路先按普通的反激方式连接(不安装RCD电路),得到的Vds波形如下:
正常反激波形.jpg
                              
     图5-7-1 普通反激电路无RCD吸收的Vds波形
如图普通的反激电路在不加吸收电路时,漏感能量会在MOS管的漏极上产生很高的尖峰电压。

boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2017-6-26 20:50:09
 
电路按图5-5的隔离Boost电路来连接得到的Vds波形如下:
隔离Boost电路波形.jpg
                              
            图5-7-2 隔离Boost电路Vds波形
图中Vds电压是由2倍Vcc加一个小尖峰构成,这个小尖峰是否是因双线并绕不完美而产生的漏感造成的呢?再看图5-6电路的测试结果。

boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2017-6-26 21:07:59
 
图5-6电路测试的Vds波形如下:
漏感吸收电路波形.jpg
                              
          图5-7-3 无损吸收电路的Vds波形
图5-7-3同图5-7-2的波形几乎一样都带有小尖峰,图5-6的无损吸收电路只用了一个线圈而且漏感的吸收回路也畅通无阻不应有这个小尖峰,根据之前的实验结果这个小尖峰是由二极管的正向导通压降造成的。这个问题在论坛中也有讨论,说二极管除了有反向恢复时间外也有正向恢复时间,随着功率的增大这个正向导通小尖峰可以达到50~60V的压降。
下一步准备在相同的实验条件下对比隔离Boost电路、无损吸收电路及普通反激电路的效率(主要目的评估漏感对效率的影响)。

boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2017-6-27 21:18:45
 
测试条件:输入电压17.3V,输出电压12V,负载100欧电阻。
反激电路的测试:
反激测试.jpg
                              
                              图5-8-1 反激电路测试
输入功率=17.3*0.101=1.75W。
反激.jpg      
          图5-8-2 反激输出电压及Vds波形
输出功率=12*12/100=1.44W  , 效率=1.44/1.75=0.823。(输出电压高于12V,实际效率高于计算值)

boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2017-6-27 21:25:55
 
隔离Boost电路测试:
隔离Boost测试.jpg
                              
                   图5-9-1 隔离Boost电路测试
输入功率=17.3*0.105=1.82W
隔离Boost.jpg
         图5-9-2 隔离Boost输出及Vds电压
输出功率=1.44W,效率=1.44/1.82=0.79

boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2017-6-27 21:31:29
 
漏感能量吸收电路测试:
吸收测试.jpg
                              
                      图5-10-1 漏感吸收电路测试
输入功率=17.3*0.102=1.76W。
吸收电路.jpg
       图5-10-2 漏感吸收电路输出及Vds电压
输出功率=1.44W,效率=1.44/1.76=0.82。

nc965
  • 积分:92939
  • |
  • 主题:115
  • |
  • 帖子:27160
积分:92939
版主
  • 2017-6-27 22:20:41
 
有点意思,楼主继续
boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2017-6-28 20:59:31
 
对隔离Boost电路进行测试,输出负载改为12.7欧姆,输入电压由30V变到60V。(NCP1207芯片在输入电压高于17V-18V时可自启动工作)
输入30V.jpg                           
         图5-11-1 输入30V时输出及Vds电压
输入40V.jpg
         图5-11-2 输入40V时输出及Vds电压
输入50V.jpg
          图5-11-3  输入50V时输出及Vds电压
输入60V.jpg
          图5-11-4  输入60V时输出及Vds电压
不同输入电压测试结果.jpg
                     图5-11-5 测试结果
测试结果显示MOS管的Vds电压大约是2倍Uin多一点,随着电压的升高越接近2倍Uin。
从波形上看漏感和MOS管的寄生电容发生了谐振,准备在MOS管上串一个二极管看能否解决这个问题。
目前测试的效率有点低,不知漏感和寄生电容的谐振会有多大影响,另外元器件可能要选专业点的。
boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2017-6-30 16:32:51
 
将图5-5电路中的初级钳位二极管换成肖特基二极管后与原Vds波形对比:
隔离Boost振铃.jpg
                              
                       图5-11-6 更换二极管后的波形对比
如图采用肖特基二极管后振铃要比采用快恢复二极管的小一些,肖特基速度虽快但也有350p的结电容,变压器漏感和这个二极管结电容+MOS管寄生电容发生谐振产生振铃。
目前没有恢复速度为零或结电容为零的二极管,那么这个振铃是一定存在的。剩下的办法就是通过降变压器漏感来减小振铃(实验中变压器采用的是普通绕法漏感比较大)。下面准备把电路接成反激结构再加上RCD吸收电路通过实验波形来进行分析。

boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2017-6-30 17:27:46
 
当前实验参数输入电压为50V,反射电源16V左右,有和没有RCD吸收的波形对比如下:
加吸收后对比.jpg                         
                          图5-11-7-1 加吸收电路后的Vds波形对比
加RCD吸收电路后Vds电压可以钳位在116伏以下,这样就可以选用低耐压的MOS管。
振铃及组成.jpg
                                 图5-11-7-2 振铃展开图
如图5-11-7-2振铃中包含三部分,1、为二极管的“正向恢复”时间,2、RCD电路吸收漏感能量过程(此过程也会吸收部分励磁电感能量),3、漏感和寄生电容发生谐振。
有时图(b)中Vds波形的第二段不为直线,如下图:
圆弧Vds.jpg
               图5-11-7-3 反激Vds波形-2
当RCD中的钳位电容C选的小一些时会出现图5-11-7-3的波形,RCD电路根据理论分析电容C的大小不会对电路效率产生影响,因吸收能量都只消耗在电阻R上。实际情况如何?
下面是三种情况的实验对比。
1、        无RCD吸收,输入电流280.7mA
2、        RCD中C较大,输入电流283mA
3、        RCD中C适中,输入电流282.2mA
根据实测结果选用适中的钳位电容要比选用大电容效率高一点,原因可能是选用小一点的电容可以在下一个开关周期提供较低的电压有益于降低MOS开关的关断损耗。
greendot
  • 积分:31525
  • |
  • 主题:0
  • |
  • 帖子:8687
积分:31525
LV12
专家
  • 2017-7-1 13:11:06
 
对于5-5图电路,
1. 电感电流和变压器电流是 DCM or CCM ?
2. 变压器工作在那个象限?
3. 吸收电容电压是大概恒定的?
4. 直流增益= ?



boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2017-7-1 16:19:13
 
1、目前实验都是工作在CCM状态,电感感量>变压器感量,空载时是DCM模式。
2、变压器工作在第一象限,这个电路我的理解还是Boost+Flyback拓扑只是多了个漏感吸收线圈。
3、吸收电容电压是恒定的,同输入电压接近。
4、直流增益大概是Boost+Flyback的组合既Uo=1/2*D/(1-D)^2*Uin/n(未验证)
greendot
  • 积分:31525
  • |
  • 主题:0
  • |
  • 帖子:8687
积分:31525
LV12
专家
  • 2017-7-1 17:19:04
 
一时看不出如何能反激,电容电压是上正下负?MOS导通时是反激工况?
boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2017-7-1 17:46:37
 
这个电路是受下面的这个帖子启发的请教这种pfc电路原理 https://bbs.21dianyuan.com/forum.php?mod=viewthread&tid=289528&page=1#pid1146084 另类PFC.jpg
电容上电压都是上正下负,工作过程也基本一样,图5-5电路只多了一个绕组可以处理漏感能量。
greendot
  • 积分:31525
  • |
  • 主题:0
  • |
  • 帖子:8687
积分:31525
LV12
专家
  • 2017-7-1 19:55:11
 
明白了,粗略推导所得,n*Vo=Vin*D/(1-D)。
boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2017-7-1 20:55:11
 
明天验证一下。
boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2017-7-2 10:41:10
 
确实如您所说,直流增益为Vo=Vin*D/(1-D)/n
占空比D
0.1
0.2
0.3
0.4
0.5
仿真输出电
11.7
25.4
42.8
67
100
理论输出电压
11.1
25
42.9
66.7
100

greendot
  • 积分:31525
  • |
  • 主题:0
  • |
  • 帖子:8687
积分:31525
LV12
专家
  • 2017-7-3 20:58:57
 
这似乎不算是传统意义上的级联 Boost-Fly 了。
boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2017-7-5 21:12:16
 
是否属于隔离的cuk或sepic电路?
greendot
  • 积分:31525
  • |
  • 主题:0
  • |
  • 帖子:8687
积分:31525
LV12
专家
  • 2017-7-6 11:14:18
 
这个应该是 Isolated BIFRED,去掉二极管D1就是Isolated SEPIC。
曾经和cmg版主讨论过两者的分别,几年后竟然对它陌生起来,认不起来了。
greendot
  • 积分:31525
  • |
  • 主题:0
  • |
  • 帖子:8687
积分:31525
LV12
专家
  • 2017-7-7 11:57:43
  • 倒数6
 
Boost Integrated Flyback/Rectifier Energy Storage DC/DC Converter.
BIFRED.png
boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2017-7-7 12:51:15
  • 倒数5
 
greendot老师还能的找出这个讨论贴的链接吗?(以前的帖子很精彩)
greendot
  • 积分:31525
  • |
  • 主题:0
  • |
  • 帖子:8687
积分:31525
LV12
专家
  • 2017-7-7 13:58:55
  • 倒数4
 
找不到了,记得只是briefly几句话而已,没有深入。
greendot
  • 积分:31525
  • |
  • 主题:0
  • |
  • 帖子:8687
积分:31525
LV12
专家
  • 2017-7-7 14:14:46
  • 倒数3
 
          。

SEPIC and BIFRED Converters for SMPS - A Comparative Study.pdf

230.52 KB, 下载次数: 48, 下载积分: 财富 -2

boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2017-7-1 16:05:49
 
从初级采样电阻上测得的电流波形如下:
采样电流.jpg
                              
         图5-11-8 采样电阻上的电流波形
如图在MOS开关开启和关闭时刻电流波形都有振铃现象,这两个振铃的产生机理有多种说法,下面准备用实验来验证这些说法。
为了方便电流测量用共模电感改装成一个电流互感器
电流互感器.jpg
                    图5-11-9 自制电流互感器
匝数比大概是1:94,电阻36欧姆。

Coming.Lu
  • 积分:50193
  • |
  • 主题:39
  • |
  • 帖子:16001
积分:50193
版主
  • 2017-6-26 13:22:21
 
这个图,吸收电容的能量没有地方放,总会越涨越高的。
boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2017-6-26 13:28:05
 
能量回路:在开关打开的时候电容中的能量 —— 驱动变压器 —— 经MOS开关 —— 到地。
Coming.Lu
  • 积分:50193
  • |
  • 主题:39
  • |
  • 帖子:16001
积分:50193
版主
  • 2017-6-26 13:31:32
 
我说的是 5-5 的图。
boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2017-6-26 13:36:38
 
我说的也是图5-5,电路已经搭好等我实测一下就知道了。(示波器早上刚被借走······)
Coming.Lu
  • 积分:50193
  • |
  • 主题:39
  • |
  • 帖子:16001
积分:50193
版主
  • 2017-6-26 13:57:05
 
哦,我明白了,意思是MOS开时,会有抽走的通路。
就是不知那时变压器绕组电流方向是什么方向。
boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2017-6-26 20:37:30
 
嗯,是这个意思。
Coming.Lu
  • 积分:50193
  • |
  • 主题:39
  • |
  • 帖子:16001
积分:50193
版主
  • 2017-6-26 21:52:51
 
那就赶紧把电路搭起来看看啊。
我也想知道效果。
nc965
  • 积分:92939
  • |
  • 主题:115
  • |
  • 帖子:27160
积分:92939
版主
  • 2017-6-26 22:45:24
 
nc965
  • 积分:92939
  • |
  • 主题:115
  • |
  • 帖子:27160
积分:92939
版主
  • 2017-7-1 15:53:48
 
兄弟神勇,第一次见到这样对漏感极致追求的手工艺,做到了0.1%,赞一个。让我获得了一个直观认识。
虽然也曾经提出过,但我估计,同轴电缆恐怕也不会做得更好,用单根利兹线,随机抽取对半的股数构成的(互感)绕组,应该是漏感最小的,应不输于同轴线(不知道你是不是这样的)。
曾经提出:漏感是被气隙放大的,你的实验能否得出这个结论,气隙对漏感有什么影响?有什么关系?能否将就你现在的工装顺便验证一下这个事情,谢谢先。
boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2017-7-1 16:12:34
 
是用的利兹线的方法,用二十四根0.12mm的漆包线+电钻制作而成。气隙对漏感的影响我去实测一下。
boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2017-7-1 17:35:16
 
变压器漏感.jpg
以上是测试结果,手上的RLC表量程最小是2mH精度不够高。
nc965
  • 积分:92939
  • |
  • 主题:115
  • |
  • 帖子:27160
积分:92939
版主
  • 2017-7-1 23:22:32
 
这个表的精度确实太差劲,可能看不出什么问题,没电桥吗?
greendot
  • 积分:31525
  • |
  • 主题:0
  • |
  • 帖子:8687
积分:31525
LV12
专家
  • 2017-7-1 23:17:27
 
漏感是被气隙放大的 --- 对于一般的一组包一组的绕法,这是个误解,漏感基本与气隙无关。


nc965
  • 积分:92939
  • |
  • 主题:115
  • |
  • 帖子:27160
积分:92939
版主
  • 2017-7-1 23:25:01
 
漏感肯定是与气隙有关的,比如同样的一个(一组包一组)线包,气隙无限大时(空心线圈),漏磁最多,因此互感最小,因而漏感(按%表示)最大。气隙无限小(无气隙)时,磁力线穿过线包的几率最小(漏磁最少),因此互感最大,因而漏感(按%表示)最小。这应该没有疑问。
漏感是被气隙放大的这个观念是反激变压器优化设计的最重要的线索之一,在反激变压器设计要领(二)----偏重讨论146楼以专题五:反激变压器设计优化机制还未)展开讨论。
greendot
  • 积分:31525
  • |
  • 主题:0
  • |
  • 帖子:8687
积分:31525
LV12
专家
  • 2017-7-3 14:39:40
 
我说的漏感是绝对值,不是% 。
所谓的漏磁H场,大部分集中在初次级绕组间的空隙,一部分在线组内空间,一部分在绕线(铜线)里,漏感主要由绕组的物理结构决定,气隙的影响很小。
nc965
  • 积分:92939
  • |
  • 主题:115
  • |
  • 帖子:27160
积分:92939
版主
  • 2017-7-3 14:48:58
 
我说的是漏感的%,因为漏感的%与效率的%相对应(反激),做漏感实际上就是做效率。
即使漏感的绝对值,也是与气隙呈正比,原边相同感量的变压器,因ΔB不同导致的匝数不同和气隙不同,获得的漏感是显著不一样的。这件事一直是工程上纠结的事情。
看来要马上展开彼贴的讨论。
greendot
  • 积分:31525
  • |
  • 主题:0
  • |
  • 帖子:8687
积分:31525
LV12
专家
  • 2017-7-3 15:13:30
 
我意思是说,一个变压器,改变它的气隙(感量当然也跟着变),漏感的绝对值大致不变。
如果改变气隙时要保持感量不变,那漏感自然与之前的不同,气隙大一倍,漏感也许大一倍,这是增加匝数,改变了绕组结构的结果。
nc965
  • 积分:92939
  • |
  • 主题:115
  • |
  • 帖子:27160
积分:92939
版主
  • 2017-7-3 16:29:51
 
最后的结论依然是:漏感是被气隙放大的
欲减少漏感,你要尽一切可能去减小气隙。这是反激变压器优化设计的最重要的线索之一。
看懂了这个事,才算看懂了反激变压器。
而这个事并不明显,初学者并不容易立即明白,因为(我见到的)任何反激变压器的计算方法都不会直接说出这个事,但它却是至关重要的。
greendot
  • 积分:31525
  • |
  • 主题:0
  • |
  • 帖子:8687
积分:31525
LV12
专家
  • 2017-7-3 17:21:55
 
这就说成,气隙是直接原因了,其实是间接的,我也可以说,漏感是被匝数放大的,漏感是被初次绕组间的空隙放大的,。。。
李版有怎么手段去减小气隙呢?

就DCM反激来说,磁芯和最高工作磁密定了,气隙也就定了,没有调整的余地。

nc965
  • 积分:92939
  • |
  • 主题:115
  • |
  • 帖子:27160
积分:92939
版主
  • 2017-7-3 17:48:28
 
已经移植,在彼贴讨论吧
sony545154
  • 积分:420
  • |
  • 主题:0
  • |
  • 帖子:14
积分:420
LV6
高级工程师
  • 2017-6-5 15:07:49
 
感谢分享
boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2017-7-5 21:13:49
 
对现有的电路做了几个测试:
1、        正常RCD电路与装在并绕绕组上的RCD电路的测试对比。
1正常RCD电路波形.jpg                           
                         图6-1 正常反激电路加RCD电路后的Vds波形

1并绕RCD电路及波形.jpg
                         图6-2 双线并绕绕组加RCD电路后的Vds波形
对比图6-1和图6-2,虽然RCD电路所加的位置不同但对变压器漏感的吸收效果近乎一样,测试结果说明双线并绕的耦合效果很理想(实际电路用的是利兹线)。
boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2017-7-5 21:40:51
 
2、        交叉调整率测试
实验用的电路比普通反激多出一路双线并绕线圈所以可以等效为四路输出,见下图:
四路输出.jpg
                      图6-3 等效四路输出反激
其中输出Vo是接反馈信号,期望能通过不同的测试方式找出或证明影响交叉调整率的因素。
nc965
  • 积分:92939
  • |
  • 主题:115
  • |
  • 帖子:27160
积分:92939
版主
  • 2017-7-5 21:46:37
 
首先漏感模型要清楚
boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2017-7-6 15:10:04
 
1)交叉调整率跟次级漏感有关。
选比较典型的两个输出通道Vo通道和Vb通道,Vo通道带有一定漏感,Vb通道的漏感很小,Vcc通道为辅助电源通道认为始终工作于轻载状态。         
因反馈接在Vo通道上所以Vo的输出始终是恒定的12V,通过监控工作于轻载的Vcc通道来分析漏感的影响。
交调测试电路1.jpg                
                    图6-4-1 负载接Vo通道的测试电路
如图6-4-1是普通的反激电路工作方式,输出Vo通道分别接轻载和重载时Vcc上的波形变化如下:
交调之轻重载对比.jpg
                     图6-4-2 Vo通道接轻载、重载时对Vcc电压的影响
图6-4-2显示当Vo通道接轻载时Vcc电压略低压12V,当Vo通道接重载时Vcc电压高压12V,符合多路反激的特性。(红色曲线Vo,蓝色曲线Vcc)
接下来将Vo通道上的负载去除在Vb通道上加负载,电路及测试结果如下:
交调测试电路2.jpg
                      图6-4-3 无漏感的Vb通道接负载对Vcc电压的影响
从图6-4-3的测试结果看当Vb通道接负载时Vcc的电压不升反降,据此分析因Vb通道没有漏感所以在这里起钳位作用。
greendot
  • 积分:31525
  • |
  • 主题:0
  • |
  • 帖子:8687
积分:31525
LV12
专家
  • 2017-7-6 16:36:44
 
全是DCM工况?
boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2017-7-6 17:17:23
  • 倒数10
 
DCM工况,之前的芯片异常更换芯片后现在都工作在QR模式(重载)。
boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2017-7-6 19:22:20
  • 倒数9
 
2)初级钳位可以抑制空载通道电压飙升。
测试1,Vo通道接固定负载,Vb通道近乎空载(接820K电阻),Vc通道空载(不加钳位),测试结果如下:
无钳位时的Vb电压.jpg
                              
         图6-4-4 初级侧无钳位时空载Vb电压
当初级侧未加RCD钳位时MOS管的Vds电压较高导致空载的Vb通道电压也高(92V)。
测试2,相对于测试1增加了RCD钳位电路,结果如下:
钳位后的Vb电压.jpg
   图6-4-5 初级侧有钳位电路时的空载Vb电压
增加RCD钳位电路后MOS管的Vds电压被钳位下来同时空载的Vb通道电压也降下来,按这个变换趋势如果继续增大钳位功率则Vb通道的电压将降低至满载时的电压附近,交叉调整率问题将得到改善。(考虑二极管的正向恢复问题,Vb 通道应适当的加一假负载)

greendot
  • 积分:31525
  • |
  • 主题:0
  • |
  • 帖子:8687
积分:31525
LV12
专家
  • 2017-7-6 20:17:59
  • 倒数8
 
Vb看似是Vds尖峰的 Sample & Hold 。
boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2017-7-7 09:00:07
  • 倒数7
 
测试结果是这个效果,Vb=Vds峰值-50V,其中的50V是输入电压Vin。Vb通道因漏感最小是所以通道中电压飙的最高的一路,原边钳位思路就是钳住Vds尖峰从而钳住电压飘高的问题。

greendot
  • 积分:31525
  • |
  • 主题:0
  • |
  • 帖子:8687
积分:31525
LV12
专家
  • 2017-7-6 11:25:06
 
初级次级同一Litz线内?
既然漏感很小,能否去掉RCD看看?
boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2017-7-6 12:28:49
 
只是初级用利兹线然后随机选取半数做成两个线圈,次级是另外的线圈同正常绕法一样。去掉RCD吸收后的波形如下:
1无RCD的Vds波形.jpg
greendot
  • 积分:31525
  • |
  • 主题:0
  • |
  • 帖子:8687
积分:31525
LV12
专家
  • 2017-7-6 12:49:04
 
还以为...., 这样初级次级间的漏感依然。
boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2017-7-6 13:00:22
 
初次级如果也采用“双线并绕”耦合电容太大恐怕会带来很多问题,只在初级双线并绕虽不能消灭漏感但可以把漏感的能量反馈回输入端。理论上效率应有所提升或者漏感可作为输出的续流电感(目前还没实现)。
boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2017-7-6 13:03:53
 
零漏感、零耦合电容变压器的想法或许会去实验一下,现有的材料比较难做。
greendot
  • 积分:31525
  • |
  • 主题:0
  • |
  • 帖子:8687
积分:31525
LV12
专家
  • 2017-7-6 14:07:36
 
两者难兼得。
flying12376
  • 积分:1360
  • |
  • 主题:17
  • |
  • 帖子:37
积分:1360
LV6
高级工程师
  • 2017-8-5 11:22:35
  • 倒数2
 
       
貌似问题还挺多,后面再一点点解决。
tinachen
  • 积分:230
  • |
  • 主题:0
  • |
  • 帖子:16
积分:230
LV3
助理工程师
最新回复
  • 2019-9-10 16:28:07
  • 倒数1
 
值得学习
热门技术、经典电源设计资源推荐

世纪电源网总部

地 址:天津市南开区黄河道大通大厦8层

电 话:400-022-5587

传 真:(022)27690960

邮 编:300110

E-mail:21dy#21dianyuan.com(#换成@)

世纪电源网分部

广 东:(0755)82437996 /(138 2356 2357)

北 京:(010)69525295 /(15901552591)

上 海:(021)24200688 /(13585599008)

香 港:HK(852)92121212

China(86)15220029145

网站简介 | 网站帮助 | 意见反馈 | 联系我们 | 广告服务 | 法律声明 | 友情链接 | 清除Cookie | 小黑屋 | 不良信息举报 | 网站举报

Copyright 2008-2024 21dianyuan.com All Rights Reserved    备案许可证号为:津ICP备10002348号-2   津公网安备 12010402000296号