世纪电源网社区logo
社区
Datasheet
标题
返回顶部
讨论

损耗分析之MOS管损耗分析探讨

[复制链接]
查看: 8077 |回复: 90
1
boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2019-1-11 16:31:15
当开关电源完成初步设计后就可以进行下一步的优化设计了,所谓优化设计就是为当前的方案选取最合适的器件以及为选取的器件配置最优的参数。开关电源中对效率影响较大的是开关管(包括二极管)和磁性元件(包括导线),在以往的设计参考资料中会给出一些一般取值,当建立了损耗模型后估计可以用公式把这些最优参数推导出来而不再依赖经验值了。此贴就准备结合Saber和Mathcad软件对MOS管的损耗分析进行学习和探讨。
                              图1-1 MOS管模型
MOS管资料 STD11N60DM2.pdf (816.52 KB, 下载次数: 128)
Mathcad文件 MOS管损耗分析.rar (347.07 KB, 下载次数: 138)
参考文献
收藏收藏29
世纪电源网-九天
  • 积分:36456
  • |
  • 主题:691
  • |
  • 帖子:4031
积分:36456
超级版主
  • 2019-1-11 16:51:06
 
欢迎欢迎!前排听讲!
wangdongchun
  • 积分:41146
  • |
  • 主题:751
  • |
  • 帖子:6832
积分:41146
LV12
专家
  • 2019-1-11 22:55:50
 
洗耳恭听   
neilperry
  • 积分:388
  • |
  • 主题:1
  • |
  • 帖子:13
积分:388
LV4
初级工程师
  • 2019-1-12 09:29:48
 
这有什么好分析的,MOS管型号规格参数曲线,人家PDF都给出来了,你拿着示波器一测就可知道管子的导通曲线怎样,一般导通曲线越陡,管子损耗越小,反之,导通的越缓慢,说明损耗也就越大,还有导通时候,管子的导通电压是很小的,如果比较大,说明管子处于半导通状态,损耗也很大
boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2019-1-12 10:43:36
 
不才水平有限,想从头学一下这个mos管的工作机理。
greendot
  • 积分:31625
  • |
  • 主题:0
  • |
  • 帖子:8701
积分:31625
LV12
专家
  • 2019-1-12 12:17:44
 
LZ谦虚。
boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2019-1-12 14:03:18
 
还真不是谦虚,好多知识都是现学的
cyx7610
  • 积分:16461
  • |
  • 主题:80
  • |
  • 帖子:3613
积分:16461
LV10
总工程师
  • 2019-1-12 23:01:13
 
在MOS选型,对MOS的损耗分析还是很必要的。
千里一梦
  • 积分:1102
  • |
  • 主题:9
  • |
  • 帖子:89
积分:1102
LV6
高级工程师
  • 2019-1-22 09:23:16
 
是要在画图之前就确定各个管子的损耗情况,进一步确认散热规格是否足够
boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2019-1-12 10:41:50
 
MOS管有两个特性曲线,转移特性曲线和输出特性曲线。
                               1-2-1 增强型NMOS转移特性曲线及近似方程
转移特性一般用夸导来表述,gm=iD/VGS|VDS,反映了栅极电压对漏极电流的控制。
                           1-2-2增强型 NMOS输出特性曲线及近似方程
上图将可变电阻区近似为可控电阻来分析。

boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2019-1-12 11:15:11
 
实际选取了一颗STD11N60DM2增强型NMOS管来分析(资料见一楼),实际的MOS曲线和图1-2-1及图1-2-2的理论曲线是有区别的,所以近似特性方程需做一些修正。
                               1-3 修正的转移特性曲线
精确的转移特性曲线方程应该是比较复杂的,这里采用分段线性化的方式将曲线描绘出来(段分的越细曲线越相似),最终为了计算的方便实际只取了其中一段既上图左图中的蓝色虚线,gm=10.5A/V(根据参考资料夸导的量纲应为mA/V),开启电压VT=5.7V
实际的输出特性曲线和理论值就差别更大了,
                          1-4 实际输出特性曲线
这颗MOS的耐压为600V,正常应用时电压会比较高所以可以忽略了这个低压段的线性区,因为此时电压相对比较低所以对损耗影响比较小但会影响到米勒平台开通时间的计算。
另外从图1-1MOS管模型可以看到寄生电容CgdCds是跟电压VDS有关的可变电容,这里先假设其为恒定不变的。一般数据手册给的三个电容值定义如下:
boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2019-1-12 12:10:03
 
计算模型及参数如下:
                                      1-5 计算模型及参数
开关电源中的电感可近似为恒流源,所以计算时MOS管的最大流会被钳位在Io处,并设MOS管开启前的电压VDS=480V

cyx7610
  • 积分:16461
  • |
  • 主题:80
  • |
  • 帖子:3613
积分:16461
LV10
总工程师
  • 2019-1-19 12:41:14
 
可以参考。
ganlanshuyang
  • 积分:2476
  • |
  • 主题:66
  • |
  • 帖子:463
积分:2476
LV8
副总工程师
  • 2019-1-12 12:50:14
 
板凳

boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2019-1-12 14:00:15
 
先分析导通过程的步骤:
1、导通过程第一阶段:
将栅极驱动电压Vgs<=VT阶段(VT为开启电压)定义为第一阶段,此时等效为下图的RC充电电路,
                           2-1-1 导通过程第一阶段等效电路
利用RC充放电公式就可以把第一阶段的波形描绘出来,
                               2-1-2 导通过程第一阶段波形
上图第一阶段漏极电压480V,漏极电流0A,栅极驱动12V,栅极电压为RC充电波形。
boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2019-1-12 14:37:55
 
2、导通过程第二阶段:
当栅极电压大于开启电压VTMOS管导通,此时MOS管中的电流遵循转移特性曲线规律既此刻需要用到夸导gm了,将电流从零升至Io=10A的这一段定义为第二阶段。
                           2-2-1 导通过程第二阶段等效电路
这一阶段如上图红色箭头的电流逐渐减小绿色箭头的电流逐渐增大,总电流之和还是10A,由于电压VDS=480V不变,所以这个阶段的栅极电压还是遵循RC充电规律,波形如下:
                        2-2-2 导通过程第二阶段波形
boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2019-1-12 15:39:02
 
3、导通过程第三阶段:
当漏极电流ID=Io=10A后电感电流全部流经MOS管,此时MOS管电压VDS开始下降,当下降到接近零时第三阶段结束。等效电路如下:
                           2-3-1 导通过程第三阶段等效电路
由于电流ID=10A恒定不变根据转移特性曲线栅极电压VGS被钳位在ID/gm,由于VGS电压不变所以无电流流经电容Cgs,根据上图红色电流路径可列出方程t3*(Vdrive-VT-VGS)/Rg=Cgd*(Vds-Vdrive)Cgd*Vds从而得出阶段三的波形曲线如下:
                              2-3-2 导通过程第三阶段波形
这一阶段栅极的驱动电压由于被漏极电流所钳位不发生变化呈一个平台状,这个平台又称米勒平台。
boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2019-1-12 17:43:09
 
4、导通过程第四阶段:
当漏极电压Vds接近0V后转移特性消失,此时Vgs电压又重新恢复了RC充电特性,由于RC充电曲线到了后期比较平缓所以取驱动电压的0.9倍为阶段4的截止时间。
                             2-4-1  导通过程第四阶段波形
综上MOS管导通过程中只在阶段2和阶段3发生了电流、电压的交叠存在开关损耗,驱动损耗和总的导通时间有关
boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2019-1-12 20:20:04
 
关断过程的步骤:
关断过程跟导通过程相似也分四个阶段也有米勒平台,关断过程波形如下:
                                       2-5 关断过程波形
有几处不同,驱动电路的下拉晶体管有一定的饱和压降,驱动电压拉不到零;电感电流经历了Ton后会变大所以关断时刻的Io要比导通时的大;关断时刻的漏极电压大于等于导通时的漏极电压(Vds)。综上关断损耗大于开通损耗,不过一般驱动电阻Rg上会采取反并联一个二极管的措施,可以有效降低关断损耗。
boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2019-1-12 21:37:21
 
按图1-5的参数对Saber中的MOS管进行设置,首先设置转移特性曲线如下:
                              2-6-1 设置转移特性曲线
输出特性曲线中只能让其中一根重合,不知是不是方法不对目前这部分没有做设置同Mathcad计算一样会带来一些误差。下面的是Saber仿真和Mathcad计算对比:
                             2-6-2 SaberMathcad结果对比
因为假设的条件相近所以二者的结果也比较相近的,由于之前忽略了电容可变及输出特性中的可变电阻区所以跟真实的MOS管会有一些差别,对比如下:
                              2-6-3 Saber与实际MOS曲线对比
如上图所示实际MOS的米勒平台比仿真和计算的结果要宽,不过多出的这一部分对应的Vds电压已经降为零所以对开关损耗没太大影响,对驱动损耗的计算会产生一些影响。
wangdongchun
  • 积分:41146
  • |
  • 主题:751
  • |
  • 帖子:6832
积分:41146
LV12
专家
  • 2019-1-12 21:40:12
 
感谢坛友的资料分享
GW15841681869
  • 积分:901
  • |
  • 主题:34
  • |
  • 帖子:204
积分:901
LV6
高级工程师
  • 2019-1-13 17:50:24
 
说得好,我最近也在研究MOS损耗,这个资料很有用啊!
wangdongchun
  • 积分:41146
  • |
  • 主题:751
  • |
  • 帖子:6832
积分:41146
LV12
专家
  • 2019-1-13 21:28:01
 
不知坛友有其他资料吗 分享一下吧
boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2019-1-13 21:16:46
 
对方程做了点修正,将时间t3(米勒平台)放大1.8倍用来修正可变电阻区和可变电容的误差。
                            2-7 米勒平台时间修正
见上左图红圈处,可变电阻区和可变电容引发曲线偏转导致米勒平台的时间延长了。
之前的仿真和计算都是在实验室条件下建立的,在实际电路中会存在寄生电感或变压的器漏感等因素都将引起曲线的变化,另外DCM模式和CCM模式下开关的损耗对比,CCM模式下反向恢复对损耗的影响,漏感、驱动电阻对损耗的影响等问题都需进一步的分析。
cyx7610
  • 积分:16461
  • |
  • 主题:80
  • |
  • 帖子:3613
积分:16461
LV10
总工程师
  • 2019-1-15 21:54:12
 
计算很详细。
cyx7610
  • 积分:16461
  • |
  • 主题:80
  • |
  • 帖子:3613
积分:16461
LV10
总工程师
  • 2019-1-17 22:07:28
 
不错,学习了。
mm88066
  • 积分:429
  • |
  • 主题:0
  • |
  • 帖子:19
积分:429
LV6
高级工程师
  • 2019-1-14 10:39:59
 

POWER_MOSFET_AN_中文版.pdf

1.32 MB, 下载次数: 291, 下载积分: 财富 -2

boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2019-1-14 13:53:17
 
非常感谢!非常棒的资料很专业!
古通88
  • 积分:1999
  • |
  • 主题:6
  • |
  • 帖子:411
积分:1999
LV6
高级工程师
  • 2019-1-14 15:40:45
 
谢谢,收藏了慢慢细看。
cyx7610
  • 积分:16461
  • |
  • 主题:80
  • |
  • 帖子:3613
积分:16461
LV10
总工程师
  • 2019-1-19 12:41:48
 
已收藏本帖。
greendot
  • 积分:31625
  • |
  • 主题:0
  • |
  • 帖子:8701
积分:31625
LV12
专家
  • 2019-1-14 15:50:52
 
这不就是日本Renesas Electronics Corp. 的 appnote 么? 这家 MOS-TECH 把人家的名字改了,变成自己的了。
古通88
  • 积分:1999
  • |
  • 主题:6
  • |
  • 帖子:411
积分:1999
LV6
高级工程师
  • 2019-1-14 15:57:10
 
呵呵,没有qiang,没有炮,敌人给我们造。
xiaoliusheng
  • 积分:523
  • |
  • 主题:1
  • |
  • 帖子:33
积分:523
LV6
高级工程师
  • 2019-3-13 15:50:31
 
感谢坛友的资料分享
edie87
  • edie87
  • 离线
  • LV8
  • 副总工程师
  • 积分:5182
  • |
  • 主题:4
  • |
  • 帖子:925
积分:5182
LV8
副总工程师
  • 2020-4-16 14:48:33
  • 倒数10
 
正是我需要的,感谢感谢
awcnmlgb21
  • 积分:115
  • |
  • 主题:0
  • |
  • 帖子:1
积分:115
LV2
本网技师
最新回复
  • 2021-1-12 19:42:42
  • 倒数1
 
谢谢!!就近一直再找
boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2019-1-14 23:13:47
 
为创造相同的测试条件,设计了一个1100W的反激电源,参数如下:
                          3-1 1100W反激变压器参数
将之前按数据手册设计好的MOS管放到实际的仿真电路中测试,首先是没有漏感的测试情况:
                                    3-2 无漏感反激测试
在仿真中没找到Vgs电压曲线,这里放置了栅极电流Ig来替代,从上图看Vds电压和漏极电流Id都和之前的仿真、计算结果相近。上述仿真参数Time step设置为10n耗时较久,后面的仿真都会按100nS来设置在波形上会有些失真。
其次给变压器上加6uH的漏感,仿真结果如下:
                                     3-3 6uH漏感仿真结果
漏极电流的di/dt被漏感限制的比较低呈现“零电流”开通模式,测了一下这个di/dt=Vin+Vor)/Lr确实是符合的。这里就有些困惑了,因为漏感的存在(1%左右)CCM反激开关没有了开通损耗(关断损耗会加重)?那输出二极管的反向恢复问题又该如何解释呢?

boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2019-1-15 07:24:12
 
把时间轴拉长并模拟发生反向恢复时的情形如下:
                               3-4 反向恢复引发尖峰电流
如上图所示,一般的二极管反向恢复时间是百nS级的跟MOS的开通时间不是一个量级的,反向恢复电流的di/dt受输入、输出测漏感限制,有漏感存在的情况下,MOS管的开通都近乎零电流开通即便是在CCM模式,进而得出增大漏感可以有效限制反向恢复电流的结论。
DCM模式下也一定不存在输出二极管的反向恢复问题,但是CCM模式时增大漏感会降低效率,如果漏感的能量也能传递给负载那么就可以一举兼得了,一种兼容DCM&CCM优点的反激电路就这样产生了。

boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2019-1-15 10:07:56
 
同样这种思路可以用在CCM模式的Buck电路上:
                          图3-5 CCM&DCM串联模式Buck电路
图中的变压器没有隔离要求所以耦合可以做的好一些尽量降低漏感,RCD的吸收功率可以很小。因为Buck的续流电感没有变压器其“反射电压”不可变所以MOS管所承受的电压应力要大一些。

boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2019-1-16 09:42:13
 
Saber仿真关断时的电流、电压波形如下:
                      图3-6 关断时MOS管的电流、电压波形
关断时刻漏感没有直接参与或者说之前的关断损耗计算公式可以直接应用,但是漏感会导致Vds漏源电压升高,间接的引起关断损耗增加。
另外对于RCD吸收电路理论上吸收电容取大一些不会影响效率,因为电容是无功器件并不消耗能量,所有的漏感能量都将由吸收电阻消耗掉。实际电路中吸收电容小一些反而效率更高,原因可能是吸收电容小纹波大,在MOS管的关断时刻Vds电压比较低所以关断损耗低,尤其是DCM模式下更明显。
有了修正的导通和关断模型后就可以将之前的问题都量化处理了,为找出最优参数创造了条件。(变压器理想化的前提下)
greendot
  • 积分:31625
  • |
  • 主题:0
  • |
  • 帖子:8701
积分:31625
LV12
专家
  • 2019-1-15 16:39:05
 

Saber里的Diode一般是没有model到 Reverse Recovery 特性的。
姑且当做有,trr 应该是Id由斜率上升到10A时(T1),到回落到10A时(T2)的差才是 ,即 trr=T2-T1 ?
boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2019-1-15 21:18:12
 
我是在输出二极管上并联开关qr(类似同步整流),并与初级开关q同时导通来模拟反向恢复的。

在T1时间段输出二极管并联的开关导通与否都不会影响电流变化,不过这段时间应该也算是反向恢复的一部分,又做了另一个仿真把负载电流降低后T2-T1的这段时间会发生变化。

greendot
  • 积分:31625
  • |
  • 主题:0
  • |
  • 帖子:8701
积分:31625
LV12
专家
  • 2019-1-16 11:21:13
 
我理解,Id 未到10A时,Idiode的电流还是正向的吧,刚过10A时,Idiode 开始反向,RR才开始,即Id高过10A的部分,才是RR过程。
boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2019-1-16 12:53:45
 
重新理解了一下trr的定义,确实如您所说,电流反向才算RR。
我这个模型过于简单,只能反映反向恢复最差的一种情况,实际情况应该比这好,比如10A前电流在减小PN结存储的电荷也会跟着减少,trr时间应该会缩短。

boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2019-1-16 13:45:05
 


这个trr示意图是对上面一段话的图形解说,在电流未反向前的下降时间(或di/dt)对反向恢复有一定的影响,如果理解正确的话是否有机会建立一个较准确的二极管反向恢复模型?
greendot
  • 积分:31625
  • |
  • 主题:0
  • |
  • 帖子:8701
积分:31625
LV12
专家
  • 2019-1-16 14:04:20
 
可能是模型的关系吧,还有不合理的地方,譬如Id的峰值,应该是Io+IRM,现在Io改变,它却不动,另RR的tb时段也太快了吧,几乎没有,不合常理,(电流突变,Diode的反峰电压頗巨吧)。
这里有华整顿大学的Saber Model,您看看能不能用,我多年前试过是可以的,
RR Diode.rar (8.06 KB, 下载次数: 19)
boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2019-1-16 15:43:44
 
谢谢!回去好好学习一下。IRM是指什么电流?在仿真中用的是理想开关没有关断延时所以tb几乎为零了,这里速度太快了用运放等去模拟这段曲线有些吃力了(资料中说接近RC放电曲线?)。电流突变时因变压器漏感和导线电感的存在,二极管是要承受很大的反向电压,所以加了个RC吸收。

greendot
  • 积分:31625
  • |
  • 主题:0
  • |
  • 帖子:8701
积分:31625
LV12
专家
  • 2019-1-16 16:58:32
 
IRM就是37楼的Irr,最大反向电流,跟 If 和 dIf/dt 有关。
tb 是diode本身的特性。
boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2019-1-16 18:10:35
 
您有这个关系方程吗?或者在数据手册上可以查的到吗?有了它这个反向恢复波形就可以准确的描绘出来了。
greendot
  • 积分:31625
  • |
  • 主题:0
  • |
  • 帖子:8701
积分:31625
LV12
专家
  • 2019-1-17 10:52:49
 
如果不太较真的话,可以假设 ta=tb,导出下列的关系式,这在很多地方都找的到的,


下面文章供您参考,其实这方面资料不少,
Adding the Reverse Recovery Feature to a Generic Diode.pdf (269.4 KB, 下载次数: 51)
boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2019-1-17 17:30:48
 
非常感谢,参照您的方程做的曲线如下:

tb里的几个参数不清楚如何设置,跟您一样也采用了简单处理,假设ta=tb。
根据MOS管STD11N60D的体二极管参数trr=160nS,di/dt=100A/uS先计算出carrier lifetime=51.2nS,再计算出IRM,然后代入方程描绘出曲线。
有一个疑惑,当我调整电路的di/dt时,参数trr是恒定的还是跟di/dt有关?如果有关关系式是什么呢?
boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2019-1-17 17:46:35
 
应该是我理解有误,通过数据手册的参数先求出carrier lifetime,这个是不随di/dt变化的,而trr会随着di/dt的变化而变化。

greendot
  • 积分:31625
  • |
  • 主题:0
  • |
  • 帖子:8701
积分:31625
LV12
专家
  • 2019-1-17 21:06:43
 
是的,carrier lifetime是diode 的不变特性(温度除外?)。觉得不妨假设 tb=k*ta,看看效果如何。如果tb=ta*e-k*t,不知可否模拟soft recovery diode ?
boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2019-1-17 21:29:03
 

tb时间段改成了-IRM*e-kn*t,曲线看起来更接近了。(上面公式中的ta不是trr中的ta,还包含了电流下降到零这一段的时间)
boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2019-1-17 21:48:58
 

这里的参数kn不知道取多少合适?
greendot
  • 积分:31625
  • |
  • 主题:0
  • |
  • 帖子:8701
积分:31625
LV12
专家
  • 2019-1-17 22:14:01
 
有个Softness Factor的东西,定义为S=tb/ta,如果S>1,则视为Soft Recovery ,否则,是Abrupt Recovery (Snappy).。
46楼图里S<1,属后者。
boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2019-1-17 22:23:28
 
多谢指教!
greendot
  • 积分:31625
  • |
  • 主题:0
  • |
  • 帖子:8701
积分:31625
LV12
专家
  • 2019-1-18 11:48:48
 
刚发觉Qrr=IF*τ 是不是有点问题? Datasheet 上并不如此,这样的话,把原式里的 IF*τ 改为 datasheet 里的 Qrr 就是了。
实际 Qrr=QF - Recombination Charge ,QF=IF*τ 是正偏时储存的电荷,有说dIF/dt 很高时,Recombination 很少,Qrr≈ QF
boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2019-1-19 09:50:27
 
谢谢学了好多知识,半导体器件的公式估计也不会很简单,这里能证明di/dt对反向恢复的影响及大概估算出反向恢复损耗目的就达到了。
GW15841681869
  • 积分:901
  • |
  • 主题:34
  • |
  • 帖子:204
积分:901
LV6
高级工程师
  • 2019-1-18 16:18:06
 
学习了
boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2019-1-20 10:28:53
 
MOS管驱动电阻设计:
                         4-1 MOS管驱动电路
实际的驱动电路如上图不可避免的会引入导线电感L,构成了LRC电路。恰当的驱动电阻Rg设计可以避免震荡同时兼容效率。

boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2019-1-20 11:32:49
 
导线电感资料给的参考公式为:L=Length(nH/mm)+10(nH)。存在一个疑惑,这里的Length怎么算?闭环导线总长?一半?闭环导线的形状产生的影响怎么算?比如等长圆形的、长方形的、窄长方形的?
另一种方法可以通过改变Rg电阻、并联Cgs电容通过测量不同的震荡频率来推算导线电感。当我们确定了导线电感后就可以列方程求解电阻Rg了。
                                       4-2 LRC电路震荡波形
参考上图当取驱动电阻取Rg=16Ω时电路未发生震荡,公式Rg=2*Ldriver*Cg^0.5可作为驱动电阻的选择参考(调节阻尼系数)
Saber的仿真波形如下:
                                   4-3 Saber仿真驱动波形
如上图所示,驱动电阻越小越容易震荡,相反驱动电阻越大导通损耗越大。
boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2019-1-20 11:45:18
 
输出二极管RC吸收电路参数设计:
前面虽然有个兼容DCM&CCM的电路,但目前尚未证实其实用性,针对于普通的CCM模式电路一般都要加RC吸收电路的(或其它吸收电路),这里电路的参数是可以通过设计得到的。

boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2019-1-20 13:12:24
 
                           5-1 输出二极管RC吸收电路
如上图所示RC吸收电路+漏感Lr也构成了一个LRC电路,根据之前的方法先并联不同的电容根据f=1/(2πLC)推出寄生电容和寄生电感的大小。根据能量守恒列方程0.5*Lr*Irr^2=0.5*C*V^2+Dioloss,先预设△V求出吸收电容C的大小,再根据R=(L/C)^0.5调整阻尼系数。
仿真中用的是理想二极管瞬间关断没有Dioloss损耗(存在反向恢复时间),在未加RC吸收时的波形如下:
                                 5-2 未加RC吸收的波形
没有RC吸收电路时二极管的反向电压瞬间飙升的很高,根据之前的测量参数解方程如下:
按此参数获得的仿真结果如下:
                                5-3 RC吸收后的波形
当考虑实际二极管也会消耗一部分能量时,二极管的反向峰值电压会更低一些。此方法可以提供参考方向,结合实际的调试来完成对RC吸收参数的设计。
wangdongchun
  • 积分:41146
  • |
  • 主题:751
  • |
  • 帖子:6832
积分:41146
LV12
专家
  • 2019-1-20 21:46:13
 
不错的分享   学习了   这种资料坛友都是从哪找到的
boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2019-1-21 08:53:24
 
也没什么特别的途径,都是baidu来的。
wangdongchun
  • 积分:41146
  • |
  • 主题:751
  • |
  • 帖子:6832
积分:41146
LV12
专家
  • 2019-1-21 12:47:02
 
好的,以后有疑问还望多多赐教
cyx7610
  • 积分:16461
  • |
  • 主题:80
  • |
  • 帖子:3613
积分:16461
LV10
总工程师
  • 2019-1-20 21:51:38
 
MOS的损耗分析还是很必要的。
boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2019-1-21 08:57:42
 
是的,最少能为参数设计找到理论依据。
boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2019-1-25 23:26:20
 
考虑漏感或者DCM模式时的导通过程和CCM模式的波形对比如下:
                       6-1 存在漏感或DCM导通过程波形
设计一个输入100V~300V,功率60W的反激电源,综合之前的分析获得如下结果:(设Ron=0.36Ω恒定)
                                     6-2 损耗分析1
上图对比了从DCMCCM到深度CCM,输入电压从100V300V变化过程中开关损耗的变化情况。
不同输入电压,低压输入时平均电流大MOS管的沟道电阻Ron上损耗较大,高压输入时开关损耗较大。
不同设计模式,按DCM模式设计的峰值电流大开关损耗大,CCM模式开关损耗较小(暂未考虑输出二极管反向恢复问题)。

boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2019-1-27 10:12:58
 
RCD吸收参数设计:
按理论公式设计的RCD参数往往跟实际相差很大,从电路上进行分析大概由下面几个因素引起。
                                 6-3 RCD吸收电路能量分布
如上图,1MOS管的Cds电容、变压器的匝间电容等会吸收一部分漏感能量,2、变压器的次级漏感Lrs会导致吸收功率增大(输出低压大电流时导线寄生电感折算到初级甚至会是初级漏感的几倍),3RCD中二极管存在反向恢复问题,4、变压器漏感测的不准导致计算偏差较大。
测量这些寄生参数是比较困难的,而实际上机调试则需尝试多组参数,有一种解方程的方法比较便捷:
首先按理论公式(k=0.5)计算出RcCc放入实际电路,其次根据实测的吸收电压值调整修正参数k,当修正的计算值跟实测值一样时获得的值k既为所需修正参数,将此值代入理论公式重新计算出RcCc。经验证这种方法的结果比较准确。

零下12度半
  • 积分:482
  • |
  • 主题:21
  • |
  • 帖子:80
积分:482
LV6
高级工程师
  • 2020-8-25 13:46:56
  • 倒数7
 
想问一下目前看到功耗计算的几个问题:1. 功耗,功率,和能量之间的关系是什么样的?
2. 为什么在算导通损耗的时候,公式里面只乘以占空比,而没有周期。
3. 为什么在计算开通和关断损耗的时候,又加上了时间?
楼主能详细解释一下功耗计算的目前一些计算公式为什么是这样的原因吗?
boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2020-8-25 15:28:44
  • 倒数6
 
1、(功耗+功率)*t=能量?不确定
2、乘占空比可以得到平均值
3、也是利用占空比求平均值,这里的占空比是用导通(关断)时间除以开关周期
零下12度半
  • 积分:482
  • |
  • 主题:21
  • |
  • 帖子:80
积分:482
LV6
高级工程师
  • 2020-8-26 10:53:27
  • 倒数5
 
1.功率*t=能量这些理解不太理解的是,在计算开关管的损耗的时候,
无论是导通损耗还是开关损耗,都带上了时间,是不是算出能量然后除以时间,得到的功耗。

楼主这边能分析一个计算功耗目前一些公式的含义和推导吗?
boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2020-8-26 16:49:05
  • 倒数4
 
乘以t/T就是计算占空比D=t/T,平均功耗=t时间的能量/周期T(单位时间能量)。
千里一梦
  • 积分:1102
  • |
  • 主题:9
  • |
  • 帖子:89
积分:1102
LV6
高级工程师
  • 2019-1-27 13:56:31
 
其实对开关损耗影响的一个很重要的因素是开关管原极电感
boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2019-1-31 08:13:18
 
论坛有一份讲义其中有关于漏级寄生电感的分析只是还没细看,不知这个寄生电感对损耗有多大影响?
shakencity
  • 积分:22487
  • |
  • 主题:99
  • |
  • 帖子:774
积分:22487
LV10
总工程师
  • 2019-1-29 10:14:14
 
损耗分析之MOS管损耗分析
千里一梦
  • 积分:1102
  • |
  • 主题:9
  • |
  • 帖子:89
积分:1102
LV6
高级工程师
  • 2019-1-29 10:38:39
 
嗯?
shakencity
  • 积分:22487
  • |
  • 主题:99
  • |
  • 帖子:774
积分:22487
LV10
总工程师
  • 2019-1-30 11:28:42
 
损耗分析之MOS管损耗分析探讨
doule123
  • 积分:1398
  • |
  • 主题:2
  • |
  • 帖子:23
积分:1398
LV6
高级工程师
  • 2019-1-30 12:08:06
 
大佬,能贴出mathcad源文件嘛?谢谢
boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2019-1-31 08:07:46
 
要等春节后了,另外分析还没完成还有几处没考虑到的,损耗分析比较麻烦关联的太多。
doule123
  • 积分:1398
  • |
  • 主题:2
  • |
  • 帖子:23
积分:1398
LV6
高级工程师
  • 2019-2-14 15:08:13
 
好的,期待ing,每次边看源文件边学学建模的思路哈
laker
  • laker
  • 离线
  • LV4
  • 初级工程师
  • 积分:363
  • |
  • 主题:8
  • |
  • 帖子:34
积分:363
LV4
初级工程师
  • 2020-11-12 00:32:39
  • 倒数3
 
很棒的资料,写的很详细,牛。
Mathcad 源文件,能给下不?这样我们学习大作,就更方便了,哈
boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2020-11-12 19:49:42
  • 倒数2
 
已上传在1楼。
xue111000536
  • 积分:639
  • |
  • 主题:1
  • |
  • 帖子:55
积分:639
LV6
高级工程师
  • 2019-1-31 09:25:35
 
楼主厉害,好好学习
lyh000
  • lyh000
  • 离线
  • LV3
  • 助理工程师
  • 积分:251
  • |
  • 主题:2
  • |
  • 帖子:13
积分:251
LV3
助理工程师
  • 2020-2-20 14:32:39
 
谢谢,正在学习
adobepdf
  • 积分:24008
  • |
  • 主题:66
  • |
  • 帖子:388
积分:24008
LV10
总工程师
  • 2020-2-21 11:19:40
 
损耗有时候还是比较重要的
合味道
  • 积分:203
  • |
  • 主题:1
  • |
  • 帖子:29
积分:203
LV3
助理工程师
  • 2020-2-22 22:43:00
 
正在学习
blueskyy
  • 积分:28371
  • |
  • 主题:129
  • |
  • 帖子:13401
积分:28371
LV10
总工程师
  • 2020-2-26 16:20:36
 
学习~
blueskyy
  • 积分:28371
  • |
  • 主题:129
  • |
  • 帖子:13401
积分:28371
LV10
总工程师
  • 2020-4-16 17:32:50
  • 倒数9
 
来向楼主学习的 ~
boy59
  • boy59
  • 离线
  • LV10
  • 总工程师
  • 积分:16430
  • |
  • 主题:118
  • |
  • 帖子:2779
积分:16430
LV10
总工程师
  • 2020-4-16 20:33:14
  • 倒数8
 
相互学习,以前都是跟着大佬学的。
热门技术、经典电源设计资源推荐

世纪电源网总部

地 址:天津市南开区黄河道大通大厦8层

电 话:400-022-5587

传 真:(022)27690960

邮 编:300110

E-mail:21dy#21dianyuan.com(#换成@)

世纪电源网分部

广 东:(0755)82437996 /(138 2356 2357)

北 京:(010)69525295 /(15901552591)

上 海:(021)24200688 /(13585599008)

香 港:HK(852)92121212

China(86)15220029145

网站简介 | 网站帮助 | 意见反馈 | 联系我们 | 广告服务 | 法律声明 | 友情链接 | 清除Cookie | 小黑屋 | 不良信息举报 | 网站举报

Copyright 2008-2024 21dianyuan.com All Rights Reserved    备案许可证号为:津ICP备10002348号-2   津公网安备 12010402000296号