世纪电源网社区logo
社区
Datasheet
标题
返回顶部
讨论

三极管饱和

[复制链接]
查看: 7377 |回复: 7
1
arronwe7
  • 积分:781
  • |
  • 主题:36
  • |
  • 帖子:241
积分:781
LV6
高级工程师
  • 2011-1-26 08:31:16
即将新年了,写点东西和大家讨论下。从我身边的时间情况来看,现在的很多工程师已经不知道怎么去使用三 极管了,这个曾经作为电路设计最核心的元件,做为电子工程师最基本的知识现在却不被大多数的工程师掌握,可以说是整个行业的悲哀啊,当然导致的原因很多, 希望在这里大家能畅所欲言!
我简单的画了一个最基本的电路模型,我们先假设这个三极管的Vbe=0.7v,Hfe=10,Icm=100mA来展开讨论。




下面来讨论下究竟什么叫三极管的饱和,到底什么是饱和压降,是否如香雪茶所说的,BE正偏,BC反偏就是饱和呢,还是当晶体管处于饱和状态时,其基极电流对晶体管的控制将失去作用呢,


1:当我们调节可调电阻,R1,使R1=4.3K时,通过欧姆定律我们可以计算得到,
Ib=(5-0.7)/4.3K=1mA,
那我们就可以计算出IC=Hfe*Ib=10mA,

假如这个时候我调节R3,使R3=500欧姆,通过计算我们可以得到Vc=5-(10mA*0.5K)=0V,

这个时候我们来看三极管三个极的电压,Vb=0.7,Vc=0,Ve=0,

2:当我们调节可调电阻,R1,使R1=4.3K时,通过欧姆定律我们可以计算得到,
Ib=(5-0.7)/4.3K=1mA,
那我们就可以计算出IC=Hfe*Ib=10mA,

假如这个时候我调节R3,使R3=1K欧姆,通过计算我们可以得到Vc=5-(10mA*1K)=-5V,回出现-5V吗,当然不会,因为没有负压,
所以Vc的电压会停留在0V,那这个时候我们再来看下Ic到底是多少
通过欧姆定律我们可以计算出
Ic=(5-Vc)/1K=(5-0)/1=5mA,而不是10mA,这个是为什么呢,

这个时候我们来看三极管三个极的电压,Vb=0.7,Vc=0V,Ve=0V,

3:当我们调节可调电阻,R1,使R1=2.15K时,通过欧姆定律我们可以计算得到,
Ib=(5-0.7)/2.15K=2mA,
那我们就可以计算出IC=Hfe*Ib=20mA,假如这个时候我调节R3,使R3=1K欧姆,通过计算我们可以得到Vc=5-(20mA*1K)=-15V,回出现-15V吗,当然也不会,同样因为没有负压,
所以Vc的电压会停留在0V,那这个时候我们再来看下Ic到底是多少
通过欧姆定律我们可以计算出
Ic=(5-Vc)/1K=(5-0)/1=5mA,同样还是5mA,而不是20mA,这个又是为什么呢,

这个时候我们来看三极管三个极的电压,Vb=0.7,Vc=0V,Ve=0V,

假如三极管的饱和状态是正如香雪茶所定义的,那一上三种状态都应该是饱和,但是实际三极管饱和了吗,我可以很肯定的向大家保证都没有,为什么呢,因为以上的情况下的Ic无论是10mA5mA5mA都离集电极的最大电流Icm=100mA很远,

那到底是那里错了,是书告诉我们的这个是这个BE正偏,BC反偏就是饱和结论错了,这个是一个不负责任的结论,老师和课本都没有能准确的告诉我们什么是三极管,
到底基极是怎么来控制集电极的。
其实我觉得一个比喻比较的好,这个控制的过程就象我们用手去推一个闸门,让水流过闸门的过程
我们力气的大小就是基极电流Ib,
闸门的开口大小就是Ib*Hfe,
闸门流过的水流就是Ic

所以假如集电极连到一个大水库,我们用力推,集电极闸门的闸口开的越大,水流就会越大,我们不用力推集电极闸门的闸口开的变小,水流就会变小,这个时候水流的大小会受到闸口的大小控制。

所以假如集电极连到一个自来水管,我们再用力推,集电极闸门的闸口开的跟个火力发电站的烟囱也没有用,因为水只有这么大,再大的通道也白搭。

所以我们基极电流控制的是什么,是集电极流过电流的能力,而不是控制集电极有多少电流,只有集电极有足够的能力的时候,我们来控制这个闸口才能达到控制水流大小的目的,
所以真正意义上的饱和应该是水流大于我们的最大闸口可以流过的水流,才是正解,就是闸口已经是最大了,你水再大也是白搭。

也就是说闸门流过的最大水流Ic是受闸门的开口大小就是Ib*Hfe限制的,但是实际流过水流是没办法控制的,要看供水的设备。但最大不会超过闸口的容限。

收藏收藏
blueskyy
  • 积分:28371
  • |
  • 主题:129
  • |
  • 帖子:13401
积分:28371
LV10
总工程师
  • 2011-1-26 09:07:18
  • 倒数7
 
两个问题:
1.是否如香雪茶所说的,BE正偏,BC反偏就是饱和
这是三极管放大状态,不是饱和
2因为以上的情况下的Ic无论是10mA5mA5mA都离集电极的最大电流Icm=100mA很远,
感觉楼主并不理解什么是饱和。
轻飘飘
  • 积分:1605
  • |
  • 主题:3
  • |
  • 帖子:170
积分:1605
LV6
高级工程师
  • 2011-1-26 09:22:41
  • 倒数6
 
我暂不加评论,我觉得这个二位的叙述的非常好,这贴子开的有意思。
arronwe7
  • 积分:781
  • |
  • 主题:36
  • |
  • 帖子:241
积分:781
LV6
高级工程师
  • 2011-1-26 09:22:55
  • 倒数5
 
多谢关注,我把原文贴出来再看看吧。
晶体管的最大集电极电流Icm
晶体管的最大集电极电流 Icm

定义:晶体管处于共发射极工作时,集电极—发射极之间的电压为一定值,增加晶体管的Ic,随着Ic的增加,晶体管的放大会减小。当晶体管的放大降到是正常时(测试条件)的一半时,此时的Ic就称为Icm


此电参数对工程设计的指导意义是:决定了晶体管正常工作的电流范围。
此电参数与放大有关。从放大(此处所说的放大是指晶体管在共发射极电路时的Hfe。在没有特别说明时,都是指此)的公式上可知:


Ic=Iceo+β*Ib————(Vce=常数)


Iceo————晶体管的漏电流,又称穿透电流


晶体管在通电后,总有漏电流(Iceo)的存在。而且Iceo与温度强相关。因此,此参数也与温度强相关。


双极型晶体管是电流控制器件。在设计时,对此项参数的考虑要点是必须考虑晶体管的工作环境温度。随着温度升高,放大升高,使晶体管的Ic增大,当进入恶性循环后,晶体管会很快失效。


在设计时,整机中Ic的实测值,不要超过规格书所标的60%。如果超过此值,同样会使晶体管的可靠性出现数量级的下降。对此可以从硅材料的导电特性(趋边效应)中,找到答案。


3、 集电极最大耗散功率Pcm


定义:晶体管工作时,施加在集电极—发射极之间的电压和流过该晶体管集电极电流的乘积,即为此晶体管的集电极耗散功率。所谓集电极最大耗散功率Pcm则是考虑到晶体管的热阻、最高结温等综合因素,以文字形式,规定的值,此数值由规格书提供。


晶体管的Pcm除了与芯片面积有关外,还与封装形式有关。一般情况下,封装为TO-92的,Pcm<650mW,封装为TO-126的,Pcm<1.25W,封装为TO-220的,Pcm<2W。当芯片采用TO-220的封装时,基本就与芯片面积无关了。需要说明的是,在这里的说的Pcm,都是不带散热片的“裸管”。


此电参数对工程设计的指导意义是:决定了晶体管正常工作的功率范围。
需要说明的是,Pcm是无法进行测量的,只能靠设计和工艺保证。如果从单一的极限参数来讲,BV(反向击穿)是可逆的,即降低电压,晶体管仍能恢复原来的特性;瞬间的集电极电流超过Icm了,晶体管也就是放大变差而已。但对Pcm就不是了,如果晶体管工作时的Pc超过了Pcm,那怕是瞬间(毫秒级)的,则晶体管也很可能会永久失效,至少会使P-N结受损,这样,会导致整机的可靠性大大下降。我在进行客户服务的过程中,此类事遇到过多次。


遇到这种情况,建议要首先计算一下晶体管的功率。从Pcm的安全区来讲,设计时不要超过50%为好。现在,许多客户在使用晶体管时,往往都把管子的余量用足了,我以为,这是工程师对产品不负责任的表现。要知道,晶体管的余量是分段、分级的,设计、工艺所设定的余量,是留给产品本身的。而且,既然是余量,就会有大有小,而你拿到的样品,则是随机的,如果在这里把样品作为蓝本,则就是埋下了一颗“定时**,不知什么时候会让你手忙脚乱。所以我们在设计产品时,也应该给客户留下足够的余量,这是我们工程师的职责。


对于Pcm的设计,一定要从最坏的处着手分析,同时,还要考虑环境温度的影响。否则,很可能出现意想不到的异常。
二、直流参数(DC


常规的直流参数有:三个反向漏电流(IceoIcboIebo)、两个饱和压降(VcesVbes)、共发射极放大(Hfe或β)。分述如下。


1、 晶体管反向漏电流


定义:在PN结两端加一定值反向直流电压,此时检测到的电流,即为被测晶体管的反向漏电流。


一个双极型晶体管的反向漏电流有三个,分别是基极开路,集电极—发射极间的漏电流Iceo、发射极开路,集电极—基极间的漏电流Icbo、以及集电极开路,基极—发射极间的漏电流Iebo


此参数对工程的指导意义是提供了晶体管在设计时所需考虑的电流影响及整机工作时因温度升高,对晶体管此参数的要求。


实际上,目前所使用的晶体管,大部份是以硅材料制成的。由硅材料的特性可知,在常温下其漏电是很小的,基本是微安级。但,当温度升高后,其漏电的增涨速率则很高。因此,在用于精密放大(测量)时,一定要注意此参数对放大器的影响。


2、 晶体管的饱和压降


定义:当晶体管的两个结(集电结、发射结)都处于正偏时,则称此晶体管处于饱和状态,此时,发射结对电流阻碍时产生的电压降,称为前向饱和压降(又称正向压降),记为Vbes;集电结对电流阻碍时产生的电压降,称为反向饱和压降,记为Vces。当晶体管处于饱和状态时,其基极电流对晶体管的控制将失去作用,此时,集电极—发射极间的管压降最小。


此参数对工程的指导意义是:Vces—限制了晶体管工作时的动态范围;而Vbes—则是指出了晶体管的输入要求及范围。


此参数在实际应用中,出问题的较少。在设计时,只要考虑到随着温度升高,饱和压降会变小,对基极注入来讲,Vbes小,导致的结果是Ib增大,对晶体管的输出来讲,Vces小会出现工作点偏移。


3、 晶体管的共发射极直流放大系数Hfe


定义:晶体管在共发射极的工作状态时,固定晶体管的集电极—发射极电压(VCE=一定值),在规定的Ic条件下,测量Ib的值,用公式


Ic=Iceo+β*Ib————(Vce=常数)(Iceo————晶体管的漏电流,又称穿透电流)求出

β≈Ic/Ib(忽略晶体管的漏电流Iceo)。

此参数与温度强相关。

此参数指明了晶体管基极电流对集电极电流的控制能力。其指导意义是给出了晶体管输出与输入之间的关系。

在设计一个电路时,都是从末级输出开始,一步一步往前推,一级一级往前算,这就是对每个晶体管的放大量、工作点进行计算和确认。

我在做售后服务近程中,所碰到问题最多的是客户在进厂检验时,对供应商所供给晶体管的放大提出疑问。在处理此类问题时,发现了对放大检测过程中的误区,在此想通过解释,使大家对晶体管的放大有一个正确的理解。

A:晶体管的放大,在前道生产中是最重要的一个物理控制参数。测试时,除了严格安照产品设计规格要求的测试条件进行外,对环境温度也进行了严格的控制。一般,芯片加工厂测试工序的温度控制范围是22.5±0.5℃,而在封装厂,因各个公司的生产条件不尽相同,所能进行控制的精度不尽相同,这样,同一品种的晶体管,在不同的时期,出现冬天放大偏小,夏天放大偏大的现象。而在整机厂的进厂检验工位,其环境温度的控制远不如封装厂这样讲究,在这样的环境下检测晶体管的放大,出现误差就在所难免。当某批货的放大在规格书范围的边缘时,就会出现进厂检验不合格。对此,建议整机厂在对晶体管的放大进行专项验收时,应该在规格书上所承诺的范围上适当地放宽接收标准。



B:晶体管的放大系数,是在一种特定的条件下测得的。从晶体管的各种等效电路上可知,HfeIc的值强相关。有些整机厂为了降低生产成本,采用数字万用表对几乎所有的晶体管进行测试,并以此来作为进厂检验的标准,这实在是对晶体管放大的理解太肤浅了。根据我对数字万用表的检测,发现几乎所有的数字万用表测晶体管时所提供的测试条件是Vce=3VIc=0.5~1mA,此测试条件与90149015的常规条件相近外,与90128050Icm较大的品种,相距甚远。如果你说,我以所保留的样品为准,同样是很荒唐的。因为,你的所谓样品的放大,是在芯片加工的控制范围以外的,对此,没有重复性可言。



C:对于选取Hfe的原则。当我们确定使用某款晶体管后,首先要对此管子的放大有一个初步了解。有人说,规格书不是已经提供了吗?而我以为,规格书所提供的范围,是非常粗的。这里,你所设置的工作点,不见得与规格书所标的测试条件相同,你所要求的放大,不见得就是规格书所标出的值。因此,当你设计计算结束后,应该把晶体管在你所设定的电流条件下对所有品种的晶体管都测试一遍,从中看看自己的设定有没有问题,然后,还要查一下规格书中的曲线图,验证一下所选的晶体管是不是在安全区内。跟着才是做样板或样机。在对样机的检测中,要注意晶体管的温度变化(尤其是功放级),是不是在自己的控制这内。如果一切都顺利,也不能就此掉以轻心,以为大功告成,因为许多异常,只有在大生产时才会出现。
blueskyy
  • 积分:28371
  • |
  • 主题:129
  • |
  • 帖子:13401
积分:28371
LV10
总工程师
  • 2011-1-26 09:31:26
  • 倒数4
 
关于饱和区和放大区。不同的书有不同的定义。
http://www.21dianyuan.com/bbs/bbshome/topic.php?action=show_topic_tree&topic_id=27634
68楼。
youyoujiasu
  • 积分:2940
  • |
  • 主题:50
  • |
  • 帖子:882
积分:2940
LV8
副总工程师
  • 2011-1-27 08:01:56
  • 倒数3
 
二位说得很详细啊,基本知识还是要扎实
txj1985
  • 积分:342
  • |
  • 主题:103
  • |
  • 帖子:89
积分:342
LV4
初级工程师
  • 2012-2-6 11:39:59
  • 倒数2
 
感觉楼主说的基极电流控制阀门大小还是蛮有意思的,如果照他这个比喻来继续说的话,控制水流大小的除了阀门大小还有压力这个因素。两个因素一起考虑应该能更清楚的理解一些吧。
nk6108
  • nk6108
  • 离线
  • LV8
  • 副总工程师
  • 积分:2004
  • |
  • 主题:18
  • |
  • 帖子:613
积分:2004
LV8
副总工程师
最新回复
  • 2012-2-8 01:27:53
  • 倒数1
 
集极输出型架构 在共基模式时, Vc 才可拉到负值,
饱和跟极限参数,完全是两码事,负载压降增加至 Vcc 时就是饱和。
热门技术、经典电源设计资源推荐

世纪电源网总部

地 址:天津市南开区黄河道大通大厦8层

电 话:400-022-5587

传 真:(022)27690960

邮 编:300110

E-mail:21dy#21dianyuan.com(#换成@)

世纪电源网分部

广 东:(0755)82437996 /(138 2356 2357)

北 京:(010)69525295 /(15901552591)

上 海:(021)24200688 /(13585599008)

香 港:HK(852)92121212

China(86)15220029145

网站简介 | 网站帮助 | 意见反馈 | 联系我们 | 广告服务 | 法律声明 | 友情链接 | 清除Cookie | 小黑屋 | 不良信息举报 | 网站举报

Copyright 2008-2024 21dianyuan.com All Rights Reserved    备案许可证号为:津ICP备10002348号-2   津公网安备 12010402000296号