世纪电源网社区logo
社区
Datasheet
标题
返回顶部
讨论

大功率中频变压器研究综述

[复制链接]
查看: 1221 |回复: 0
1
世纪电源网-恬恬
  • 积分:13089
  • |
  • 主题:189
  • |
  • 帖子:608
积分:13089
超级版主
  • 2020-3-12 14:24:21
大功率中频变压器研究综述

中文关键词:  大功率中频变压器  损耗  寄生参数  绝缘  热管理

作者           单位
杨景刚        国网江苏省电力有限公司电力科学研究院, 南京 211103
张珂           东南大学电气工程学院先进电能变换与装备技术研究所, 南京 210096
陈武           东南大学电气工程学院先进电能变换与装备技术研究所, 南京 210096
赵国亮       全球能源互联网研究院有限公司先进输电技术重点实验室, 北京 102209
陈智           许继变压器有限公司技术部, 许昌 461000
董阔军       山东晨宇电气股份有限公司, 青州 262515

中文摘要:
在交直流混合配网、电力机车牵引及工业特种电源等电能变换领域,大功率中频变压器作为关键设备,因其体积与功率密度优势得到了广泛应用。目前国内对中频变压器的建模与设计已接近国际先进水平,但在制造工艺方面仍有一定差距。介绍了大功率中频变压器的应用背景,并回顾了近年来国内外的样机研制工作;分章节阐述了中频变压器的损耗计算与优化,寄生参数建模与控制、干式中频变压器绝缘以及新型热管理技术;最后,对大功率中频变压器领域目前存在的挑战与热点问题作了总结。

内容节选:
提高整机效率与功率密度是近年来电力电子设备发展的主流趋势[1],随着开关器件性能的提高与纳米晶等新型磁性材料的广泛应用[2-3],电力电子装置朝着高频化与高功率密度的方向发展。装置高频化可有效降低磁性元件(如变压器)的体积与重量,提升功率密度。大功率场合常使用绕线式(包括铜箔绕组式)中频变压器作为电压变换与电气隔离设备,其频率范围大多为1~50kHz,在诸如海上风电中压直流汇集[4-5]、电力机车牵引[6]、电力电子变压器与柔性变电站[7-11]、舰船电力系统[12]及工业特种电源等场合有广泛应用前景。
随着电网公司三型两网战略的深入,基于电力电子变压器PET(power electronic transformer)拓扑的能量路由器与柔性变电站受到了学界与工程界的广泛关注,并在苏州同里能源变革小镇等示范项目中开始得到应用,它能为新能源提供多端口、多电压等级柔性接入,实现灵活潮流控制、电能质量管理和无功补偿等功能,显著提高电网智能化水平[13]。其中大功率中频变压器不但承担了电压变换、功率传递和电气隔离等任务,同时还具有更小体积、更高功率密度等优点。
再如在电力机车牵引系统中,中压交流电网将电能传递至工频降压变压器,再通过整流器转换为中间级直流电压;此后,该直流电压分别通过多个电力电子装置逆变为各牵引电机驱动电压。然而,在高铁等现代电力机车上,各车厢均包含独立牵引系统,且车厢容量有限,因而对牵引变的体积提出了要求。受目前开关器件耐压水平的限制,可通过级联型结构[6]连接至中压交流电网,并整流为直流电压,再通过直流变压器转换为中间直流电压,后逆变用于电机牵引。大功率中频变压器作为直流变压器的关键部件,使得牵引系统体积与重量更小。
近年来,大功率中频变压器的基础模型研究与样机设计也越来越多的在重点项目中被提及,如2017年重点研发计划野大功率电力电子装备用高频磁性元件关键技术冶专项集中解决了大功率纳米晶磁芯的国产化,中频变压器损耗与寄生参数建模,多物理场耦合优化等问题,并研制200kVA,效率不低于99%的工程样机。此外,野大型光伏电站直流升压汇集接入关键技术及设备研制冶和野分布式光伏多端口接入直流配电系统关键技术和装备冶等重点研发计划项目中均包含工程用大功率中频变压器的设计与研制工作。

详情内容请戳☟
大功率中频变压器研究综述.pdf (1.53 MB, 下载次数: 13)

参考文献(共69条):
[1] Sarker P C, Islam M R, Guo Youguang, et al. State-of-the-art technologies for development of high frequency transformers with advanced magnetic materials[J]. IEEE Transactions on Applied Superconductivity, 2019, 29(2):1-11.
[2] Bahmani M A, Thiringer T, Rabiei A, et al. Comparative study of a multi-MW high-power density DC transformer with an optimized high-frequency magnetics in all-DC offshore wind farm[J]. IEEE Transactions on Power Delivery, 2016, 31(2):857-866.
[3] Villar I, Mir L, Etxeberria-Otadui I, et al. Optimal design and experimental validation of a medium-frequency 400kVA power transformer for railway traction applications[C]//2012 IEEE Energy Conversion Congress and Exposition(ECCE). Raleigh, NC, USA, 2012:684-690.
[4] Shu Liangcai, Chen Wu, Ning Guangfu, et al. A resonant ZVZCS DC-DC converter with two uneven transformers for an MVDC collection system of offshore wind farms[J]. IEEE Tr-ansactions on Industrial Electronics, 2017, 64(10):7886-7895.
[5] 王锡凡, 卫晓辉, 宁联辉, 等. 海上风电并网与输送方案比较[J]. 中·国电机工程学报, 2014, 34(31):5459-5466. Wang Xifan, Wei Xiaohui, Ning Lianhui, et al. Integration techniques and transmission schemes for off-shore wind far-ms[J]. Proceedings of the CSEE, 2014, 34(31):5459-5466(in Chinese).
[6] Taufiq J. Power electronics technologies for railway vehicles[C]//Power Conversion Conference Nagoya, 2007. PCC'07. IEEE, 2007:1388-1393.
[7] 李子欣, 高范强, 赵聪, 等. 电力电子变压器技术研究综述[J]. 中·国电机工程学报, 2018, 38(5):1274-1289. Li Zixin, Gao Fanqiang, Zhao Cong, et al. Research review of power electronic transformer technologies[J]. Proceedin-gs of CSEE, 2018, 38(5):1274-1289(in Chinese).
[8] 周冬旭, 张明, 朱红, 等. 新电改形势下智能配电网调度互动研究应用[J]. 电力工程技术, 2018, 37(2):89-94. Zhou Dongxu, Zhang Ming, Zhu Hong, et al. Research and application of smart power distribution network interactive dispatching under new electricity reform[J]. Electric Power Engineering Technology, 2018, 37(2):89-94(in Chinese).
[9] 程亮, 黄河, 朱磊, 等. 交直流配电网的交换功率灵活性提升方法研究[J]. 电力工程技术, 2019, 38(4):10-17. Cheng Liang, Huang He, Zhu Lei, et al. Method of improving exchange power flexibility between AC/DC distribution network and transmission network[J]. Electric Power Engineering Technology, 2019, 38(4):10-17(in Chinese).
[10] 耿少博, 顾乔根, 常风然, 等. 交直流混合配电网分布式无功电压互动控制策略[J]. 电力工程技术, 2019, 38(4):26-33. Geng Shaobo, Gu Qiaogeng, Chang Fengran, et al. Distributed reactive voltage and voltage interactive control strategy for AC/DC hybrid distribution network[J]. Electric Power En-gineering Technology, 2019, 38(4):26-33(in Chinese).
[11] 吴盛军, 王益鑫, 李强, 等. 低压直流供电技术研究综述[J]. 电力工程技术, 2018, 37(4):1-8. Wu Shengjun, Wang Yixin, Li Qiang, et al. Review on low voltage power supply technology[J]. Electric Power Engine-ering Technology, 2018, 37(4):1-8(in Chinese).
[12] 张新生, 肖飞, 王瑞田, 等. 考虑涡流的中频变压器箔式绕组电磁振动数值计算与分析[J]. 电工技术学报, 2018, 33(S2):434-443. Zhang Xinsheng, Xiao Fei, Wang Ruitian, et al. Numerical calculation and analysis of electromagnetic vibration considering eddy current of foil-type winding in medium-frequency transformer[J]. Transactions of China Electrotechni-cal Society, 2018, 33(S2):434-443(in Chinese).
[13] 李子欣, 王平, 楚遵方, 等. 面向中高压智能配电网的电力电子变压器研究[J]. 电网技术, 2013, 37(9):2592-2601. Li Zixing, Wang Ping, Chu Zunfang, et al. Research on medium-and high-voltage smart distribution grid oriented power electronic transformer[J]. Power System Technology, 2013, 37(9):2592-2601(in Chinese).
[14] Yang Jingxi, Liu Jianqiang, Zhang Jieqin, et al. Multirate digital signal processing and noise suppression for dual active bridge DC-DC converters in a power electronic traction transformer[J]. IEEE Transactions on Power Electronics, 2018, 33(12):10885-10902.
[15] Wang Kangping, Qi Z, Li F, et al. Review of state-of-theart integration technologies in power electronic systems[J]. CPSS Transactions on Power Electronics and Applications, 2017, 2(4):292-305.
[16] Gu W J, Liu R. A study of volume and weight vs. frequency for high-frequency transformers[C]//Power Electronics Specialists Conference, 1993. PESC'93 Record., 24th Annual IEEE. Seattle, WA, USA, 1993:1123-1129.
[17] 律方成, 郭云翔, 李鹏. 大功率中频变压器多目标参数优化设计[J]. 高电压技术, 2017, 43(1):210-217. Lü Fangcheng, Guo Yunxiang, Li Peng. Optimization design for multiple target parameters of high power medium frequ-ency transformer[J]. High Voltage Engineering, 2017, 43(1):210-217(in Chinese).
[18] Versele C, Deblecker O, Lobry J. Multiobjective optimal design of high frequency transformers using genetic algorithm[C]//2009 13th European Conference on Power Electronics and Applications. Barcelona, Spain, 2009:1-10.
[19] 曹小鹏, 陈武, 宁光富, 等. 基于多目标遗传算法的大功率高频变压器优化设计[J]. 中·国电机工程学报, 2018, 38(5):1348-1355. Cao Xiaopeng, Chen Wu, Ning Guangfu, et al. Optimization design of high-power high-frequency transformer based on multi-objective genetic algorithm[J]. Proceedings of the CSEE, 2018, 38(5):1348-1355(in Chinese).
[20] Heinemann L. An actively cooled high power, high frequency transformer with high insulation capability[C]//Se-venteenth Annual IEEE Applied Power Electronics Confer-ence and Exposition. Dallas, TX, USA, 2002, 1:352-357.
[21] Kjellqvist T, Norrga S, Ostlund S. Design considerations for a medium frequency transformer in a line side power conversion system[C]//2004 IEEE 35th Annual Power Ele-ctronics Specialists Conference. Aachen, Germany, 2004, 1:704-710.
[22] Steiner M, Reinold H. Medium frequency topology in railway applications[C]//2007 European Conference on Power Electronics and Applications. IEEE, 2007:1-10.
[23] Aggeler D, Biela J, Kolar J W. A compact, high voltage 25 kW, 50 kHz DC-DC converter based on SiC JFETs[C]//2008 Twenty-Third Annual IEEE Applied Power Electronics Con-ference and Exposition. Austin, TX, 2008:801-807.
[24] Ortiz G, Biela J, Bortis D, et al. 1 Megawatt, 20 kHz, isolated, bidirectional 12 kV to 1.2 kV DC-DC converter for renewable energy applications[C]//Power Electronics Conference(IPEC), 2010 International. IEEE, 2010:3212-3219.
[25] Atalla A, Agamy M, Dame M, et al. Advancements in high power high frequency transformer design for resonant converter circuits[C]//Energy Conversion Congress and Exposition(ECCE), 2016 IEEE. Milwaukee, WI, USA, 2016:1-8.
[26] Liu Jun, Sheng Licheng, Shi Jianjiang, et al. LCC resonant converter operating under discontinuous resonant current mode in high voltage, high power and high frequency applications[C]//Applied Power Electronics Conference and Exposition, 2009. APEC 2009. Twenty-Fourth Annual IEEE. IEEE, 2009:1482-1486.
[27] Zhang Juanjuan, Du Yumei, Li Zixin, et al. Design of a medium frequency, high voltage transformer for power el-ectronic transformer[C]//Transportation Electrification Asia-Pacific(ITEC Asia-Pacific), 2014 IEEE Conference and Expo. IEEE, 2014:1-5.
[28] 方园, 施仁毅, 夏家辉, 等. 一种基于J-A磁滞模型的变压器在线运行监测方法[J]. 电力工程技术, 2019, 38(5):177-184. Fang Yuan, Shi Renyi, Xia Jiahui, et, al. Transformer online operation monitoring method based on J-A hysteresis model[J]. Electric Power Engineering Technology, 2019, 38(5):177-184(in Chinese).
[29] Villar I. Multiphysical characterization of medium-frequency power electronic transformers[D]. Lausanne, Switz-erland:Ecole Polytechnique Fédérale de Lausanne, 2010.
[30] Brittain J E. A steinmetz contribution to the AC power revolution[J]. Proceedings of the IEEE, 1984, 72(2):196-197.
[31] Albach M, Durbaum T, Brockmeyer A. Calculating core losses in transformers for arbitrary magnetizing currents a comparison of different approaches[C]//Power Electronics Speci-alists Conference, 1996. PESC'96 Record., 27th Annual IE-EE. Baveno, Italy, 1996, 2:1463-1468.
[32] Reinert J, Brockmeyer A, De Doncker R W A A. Calculation of losses in ferro-and ferrimagnetic materials based on the modified Steinmetz equation[J]. IEEE Transactions on In-dustry applications, 2001, 37(4):1055-1061.
[33] Li Jieli, Abdallah T, Sullivan C R. Improved calculation of core loss with nonsinusoidal waveforms[C]//Industry Appl-ications Conference, 2001. Thirty-Sixth IAS Annual Meeting. Conference Record of the 2001 IEEE. Mayaguez, Puerto Rico, USA, 2001, 4:2203-2210.
[34] Venkatachalam K, Sullivan C R, Abdallah T, et al. Accurate prediction of ferrite core loss with nonsinusoidal waveforms using only Steinmetz parameters[C]//IEEE Workshop on Co-mputers in Power Electronics. Mayaguez, Puerto Rico, USA, 2002:36-41.
[35] Van den Bossche A, Valchev V C, Georgiev G B. Measurement and loss model of ferrites with non-sinusoidal waveforms[C]//2004 IEEE 35th Annual Power Electronics Specialists Conference(IEEE Cat. No.04CH37551). Aachen, Ge-rmany, 2004, 6:4814-4818.
[36] Muhlethaler J, Biela J, Kolar J W, et al. Improved core-loss calculation for magnetic components employed in power el-ectronic systems[J]. IEEE Transactions on Power electronics, 2012, 27(2):964-973.
[37] Shen Wei, Wang Fei, Boroyevich D, et al. Loss characterization and calculation of nanocrystalline cores for high-freq-uency magnetics applications[J]. IEEE Transactions on Pow-er Electronics, 2008, 23(1):475-484.
[38] Muhlethaler J, Biela J, Kolar J W, et al. Core losses under the DC bias condition based on Steinmetz parameters[J]. IEEE Transactions on Power Electronics, 2012, 27(2):953-963.
[39] 叶建盈, 陈为, 汪晶慧. PWM波及直流偏磁励磁下磁芯损耗模型研究[J]. 中·国电机工程学报, 2015, 35(10):2601-2606. Ye Jianying, Chen Wei, Wang Jinghui. Research on the core loss model under PWM wave and DC bias excitations[J]. Proceedings of the CSEE, 2015, 35(10):2601-2606(in Chinese).
[40] Dowell P L. Effects of eddy currents in transformer windings[J]. Electrical Engineers, Proceedings of the Institution of, 1966, 113(8):1387-1394.
[41] Ferreira J A. Appropriate modelling of conductive losses in the design of magnetic components[C]//Proceedings of the 21st Annual IEEE Conference on Power Electronics Specialists. San Antonio, 1990:780-785.
[42] Ferreira J A. Improved analytical modeling of conductive losses in magnetic components[J]. IEEE transactions on Po-wer Electronics, 1994, 9(1):127-131.
[43] Reatti A, Kazimierczuk M K. Comparison of various methods for calculating the AC resistance of inductors[J]. IEEE Transactions on Magnetics, 2002, 38(3):1512-1518.
[44] Tourkhani F, Viarouge P. Accurate analytical model of winding losses in round Litz wire windings[J]. IEEE Transactions on Magnetics, 2001, 37(1):538-543.
[45] Bartoli M, Noferi N, Reatti A, et al. Modeling Litz-wire winding losses in high-frequency power inductors[C]//Proceedings of the 27th Annual IEEE Power Electronics Specialists Conference. Baveno, 1996:1690-1696.
[46] Kaymak M, Shen Zhan, De Doncker R W. Comparison of analytical methods for calculating the AC resistance and leakage inductance of medium-frequency transformers[C]//Proceedings of the 17th Workshop on Control and Modeling for Power Electronics. Trondheim, 2016:1-8.
[47] 张珂, 曹小鹏, 乔光尧, 等. 高频变压器绕组损耗解析计算分析[J].中·国电机工程学报, 2019, 39(18):5536-5546, 5602. Zhang Ke, Cao Xiaopeng, Qiao Guangyao, et, al. Analysis of winding loss calculation methods for high frequency transformers[J]. Proceedings of the CSEE, 2019, 39(18):5536-5546, 5602(in Chinese).
[48] Nagarajan D A, Murthy-Bellur D, Kazimierczuk M K. Harmonic winding losses in the transformer of a forward pulse width modulated DC-DC converter for continuous conduction mode[J]. IET Power Electronics, 2012, 5(2):221-236.
[49] Wojda R P, Kazimierczuk M K. Analytical winding foil thickness optimisation of inductors conducting harmonic currents[J]. IET Power Electronics, 2013, 6(5):963-973.
[50] Wojda R P, Kazimierczuk M K. Analytical optimisation of solid-round-wire windings conducting dc and ac non-sinusoidal periodic currents[J]. IET Power Electronics, 2013, 6(7):1462-1474.
[51] Sullivan C R. Optimal choice for number of strands in a litz-wire transformer winding[J]. IEEE Transactions on Power El-ectronics, 1999, 14(2):283-291.
[52] Ouyang Ziwei, Zhang Jun, Hurley W G. Calculation of leakage inductance for high-frequency transformers[J]. IEEE Tra-nsactions on Power Electronics, 2015, 30(10):5769-5775.
[53] Colonel W, McLyman K T. Transformer and Inductor Desi-gn Handbook[M]. 4th ed. Boca Raton, FL, USA:CRC Press, 2011.
[54] Thondapu S R, Borage M, Wanmode Y D, et al. Improved expression for estimation of leakage inductance in e core transformer using energy method[J]. Advances Power Electronics, 2012, 635715:1-6.
[55] Hurley W, Wilcox D. Calculation of leakage inductance in transformer windings[J]. IEEE Transactions on Power Elec-tronics, 1994, 9(1):121-126.
[56] Bahmani M A, Thiringer T. Accurate evaluation of leakage inductance in high-frequency transformers using an impr-oved frequency-dependent expression[J]. IEEE Transactio-ns on Power Electronics, 2015, 30(10):5738-5745.
[57] Lü F, Guo Y, Li P, et al. Calculation and correction me-thod for leakage inductance of high-power medium-frequency transformer[J]. High Voltage Engineering, 2016, 42(6):170-1707.
[58] Zhang Ke, Chen Wu, Cai Xiaopeng, et al. Accurate calculation and sensitivity analysis of leakage inductance of high-frequency transformer with litz wire winding[J]. IEEE Transactions on Power Electronics, 2020, 35(4):3951-3962.
[59] 刘军, 郭瑭瑭, 常磊, 等. 高压变压器寄生电容对串联谐振变换器特性的影响[J]. 中·国电机工程学报, 2012, 32(15):16-23. Liu Jun, Guo Tangtang, Chang Lei, et al. Effects of the parasitic capacitance on characteristics of series resonant converters[J]. Proceedings of the CSEE, 2012, 32(15):16-23(in Chinese).
[60] 董纪清, 陈为, 卢增艺. 开关电源高频变压器电容效应建模与分析[J]. 中·国电机工程学报, 2007, 27(31):121-126. Dong Jiqing, Chen Wei, Lu Zengyi. Modeling and analysis of capacitive effects in high-frequency transformer of SMPS[J]. Proceedings of CSEE, 2007, 27(31):121-126(in Chinese).
[61] Biela J, Kolar J W. Using transformer parasitics for resonant converters-A review of the calculation of the stray capacitance of transformers[J]. IEEE Transactions on Indu-stry Applications, 2008, 44(1):223-233.
[62] Shadmand M B, Balog R S. A finite-element analysis approach to determine the parasitic capacitances of high-frequency multiwinding transformers for photovoltaic inverters[C]//Power and Energy Conference at Illinois (PECI), 2013 IEEE. Champaign, IL, USA, 2013:114-119.
[63] 齐玮, 钟和清, 林磊, 等. 分布电容对高频高压变压器性能的影响及其控制措施[J]. 通信电源技术, 2008, 25(3):6-8. Qi Wei, Zhong Heqing, Lin Lei, et, al. Influence of distributed capacitors on high-frequency high-voltage transformers and its restricting methods[J]. Telecom Power Technologies, 2008, 25(3):6-8(in Chinese).
[64] 王永强, 郑志宏, 王壮, 等. 大功率高频高压变压器绝缘设计研究[J]. 绝缘材料, 2017, 50(6):49-53. Wang Yongqiang, Zhen Zhihong, Wang Zhuang, et al. Study on insulation design of high power high frequency high voltage transformer[J]. Insulation Materials, 2017, 50(6):49-53(in Chinese).
[65] 韩帅. 频变电-热应力对高频电力变压器绝缘特性的耦合作用机制[D]. 济南:山东大学. 2015. Han Shuai. The impact mechanism of frequency-dependent electric-thermal stresses on the insulation properties of high frequency transformer[D]. Jinan:Shandong University, 2015(in Chinese).
[66] 刘伟杰. 高频电热应力下环氧树脂绝缘老化特性与寿命评估[D] 保定:华北电力大学, 2015. Liu Weijie. Aging characteristics and lifetime estimation of epoxy resin insulation under high-frequency electrical-th-ermal stress[D]. Baoding:North China Electric Power University, 2015(in Chinese).
[67] Das A K, Wei Zhongbao, Vaisambhayana S, et al. Thermal modeling and transient behavior analysis of a medium-frequency high-power transformer[C]//IECON 2017-43rd An-nual Conference of the IEEE Industrial Electronics Society. Beijing, China, 2017:2213-2218.
[68] Villar I, Viscarret U, Etxeberria-Otadui I, et al. Transient thermal model of a medium frequency power transformer[C]//2008 34th Annual Conference of IEEE Industrial Ele-ctronics. Orlando, FL, 2008:1033-1038.
[69] Bahmani M A, Thiringer T, Kharezy M. Design methodology and optimization of a medium-frequency transformer for high-power DC-DC applications[J]. IEEE Transactions on In-dustry Applications, 2016, 52(5):4225-4233.

此文章来自电源学报
链接:http://www.jops.cn/dy/ch/reader/view_abstract.aspx?flag=1&file_no=201910310754&journal_id=dy
收藏收藏1
热门技术、经典电源设计资源推荐

世纪电源网总部

地 址:天津市南开区黄河道大通大厦8层

电 话:400-022-5587

传 真:(022)27690960

邮 编:300110

E-mail:21dy#21dianyuan.com(#换成@)

世纪电源网分部

广 东:(0755)82437996 /(138 2356 2357)

北 京:(010)69525295 /(15901552591)

上 海:(021)24200688 /(13585599008)

香 港:HK(852)92121212

China(86)15220029145

网站简介 | 网站帮助 | 意见反馈 | 联系我们 | 广告服务 | 法律声明 | 友情链接 | 清除Cookie | 小黑屋 | 不良信息举报 | 网站举报

Copyright 2008-2024 21dianyuan.com All Rights Reserved    备案许可证号为:津ICP备10002348号-2   津公网安备 12010402000296号