世纪电源网社区logo
社区
Datasheet
标题
返回顶部
讨论

【龙腾原创】作者工作过程中汇总功率MOSFET应用典型问题

[复制链接]
查看: 6159 |回复: 6
1
adlsong
  • 积分:142
  • |
  • 主题:4
  • |
  • 帖子:3
积分:142
LV2
本网技师
  • 2014-7-30 18:13:54
在作者工作过程中,碰到一些客户的工程师问到一些功率MOSFET的应用的问题,现在整理一些典型的问题汇总如下,希望对广大的电子工程师有所帮助。


问题1在MOSFET的应用中,主要考虑的是哪些参数?在负载开关的应用中,MOSFET导通时间的计算,多少为佳?PCB的设计,铜箔面积开多大会比较好?D极、S极的铜箔面积大小是否需要一样?有公式可以计算吗?
回复:MOSFET主要参数包括:耐压BVDSS,Rdson,Crss,还有VGS(th),Ciss, Coss;同步BUCK变换器的下管,半桥和全桥电路,以及有些隔离变换器副边同步整流MOSFET中,还要考虑内部二极管反向恢复等参数,要结合具体的应用。
下面的波形为感性负载功率MOSFET开通的过程,Rg为MOSFET内部栅极电阻,Ron为MOSFET的栅极和驱动电源VCC之间的串联大电阻的和:,包括栅极外部串联的电阻以及PWM驱动器的上拉电阻。
VGS(th)和VGP在MOSFET的数据表中可以查到,有些数据表中没有标出VGP,可以通过计算得到平台的电压值。 产生开通损耗的时间段为t2和t3,t1时间段不产生开通损耗,但产生延时。

在负载开关的应用中,要保证在t3时间后,输出电容充电基本完成,就是电容的电压基本等于输入电压,在这个过程中,控制平台的电压VGP,就相当于控制了最大的浪涌电流,浪涌电流就不会对系统产生影响。因此导通时间要多长,由输出的电容和负载的大小决定。

具体的计算步骤是:设定最大的浪涌电流Ipk,最大的输出电容Co和上电过程中输出负载Io。如果是输出电压稳定后,输出才加负载,则取:Io=0。

Co×duodt+IO=Ipk

由(4)式可以算出输出电容充电时间t。负载开关的应用,通常在D和G极并联外部电容,因此,t3时间远大于t2,t2可以忽略,因此可以得到:t=t3,由(3)式可以求出D和G极并联外部电容值。

然后由上面的值,对电路进行实际的测试,以满足设计的要求。负载开关的稳态功耗并不大,但是瞬态的功耗很大,特别是长时间工作在线性区,会产生热失效问题。因此,PCB的设计,特别是贴片的MOSFET,要注意充分敷设铜皮进行散热。

在MOSFET的数据表中,热阻的测量是元件装在1平方英2OZ铜皮的电路板上。Drain的铜皮铺在整个1平方英寸、2OZ铜皮的电路板。实际应用中,Drain的铜皮不可能用1平方英、2OZ铜皮的电路板,因此,只有尽可能的用大的铜皮,来保证热性能。具体的降额值可能值可以参见以下的图。 如果是多面板,最好D和S极对应铜皮位置的每个层都敷设铜皮,用多个过孔连接,孔的尺寸约为0.3mm。


问题2功率MOSFETQgsQgdCissCrssCosstrtf的关系?
回复如下图,在一定的测试条件下,QgsCiss相关,QgdCrss相关,QgCrssCiss都相关,驱动的电压决定其最终的电荷值。QgsQgd都是基于相关的电容的计算值。

trtf如下图,对于上升和下降的延时,和CrssCiss都相关。注意此时的测量条件是阻性负载。如果是感性负载,电感电流不能突变,那么由于电感的续流,这个时间就和负载的特性相关了。

上升延时tr:上升延时的定义是在MOSFET的开通过程中,VGS的电压上升,从其10%值开始,到VDS下降到为10%VDS值为止。在开通的过程中,VGS上升米勒电容平台前的时间由Ciss决定,米勒电容平台的时间Crss由决定,过了米勒电容平台到VDS下降到为10%VDS的时间又由Ciss决定。下降延时tftr定义类


问题3AOD4126的数据表中,红色标注的ID、IDSM、IDM有什么区别?PD和PDM的值是否有标错?另外,关于RθJA和RθJC,作为用户要按照备注中的哪一项判定?对于同样规格的MOSFET,双通道和单通道相比,优势在哪里?是不是简单的Rdson减半、ID加倍等参数合成?
回复:MOSFET的数据表中,ID和IDSM都是计算值,其中,ID是基于RθJC和Rdson以及最高允许结温计算得到的,IDSM是基RθJC和Rdson以及最高允许结温计算得到的。PD和PDM也是基于上述条件的计算值。

电流的具体定义,可以参考文献:理解功率MOSFET的电流,今日电子:2011.11

在实际的应用中,由于MOSFET所用的散热条件不一样,因此,在开关过程中,还要考虑动态参数,所以,ID没有实际的意义。

RθJA和RθJC是二个不同的热阻值,具体的定义在数据表中有详细的说明,注意的是,数据表中的热阻值,都是在一定的条件下,测量得到的。实际应用过程中,由于条件不同,得到的测量结果并不相同。

使用双通道和单通道的MOSFET,要综合考虑开关损耗和导通损耗,Rdson不是简单的减半,因为二个功率管并联工作,不平衡性的问题永远是存在的,而且,动态的开关的过程中,容易产生动态的不平衡性。如果不考虑开关损耗,仅仅考虑导通损耗,那么还是要对Rdson作一定的降额。


问题4不同的测试的条件为影响MOSFET的数据表中的VGS(th)和BVDSS吗?ATE是如何判断的?
回复:不同测试条件,结果会不同,因此,在数据表中,会标明详细的测试条件。对于AET的测试,以VGS(th)为例,它和Igss相关,如AON6718L,当G和S极加上最大20V电压,注意到VDS=0V,如果Igss小于100nA,由表明通过测试。
不同的公司ST,Fairchild,IR,Vishay等,可能使用不同的Igss,如IR1010使用200nA,IR3205使用100nA。目前,行业内使用100nA更通用。同样的,BVDSS的测试条件:ID=250uA, VGS=0V,如果ID 越大,BVDSS电压值越高。

问题5一个100V的MOSFET,VGS耐压大概只能到30V。在器件处于关断的时刻,VGD大概能到100V,是因为G和S极间的栅氧化层厚度比较厚,还是说压降主要在沉底和飘移电阻上面?
回复:GS电压主要由栅氧化层厚度控制,GD主要由EPI+层厚度来控制,所以VGD耐压高。

问题6关于雪崩,下面描述是否正确?
1、单纯的一次击穿不会损坏MOSFET?
回复:很多时候,就是测1千片,或者1万片,电压高于额定的电压值,MOSFET也不会损坏。

2、雪崩损坏MOSFET有两种情况:一种是快速高功率脉冲,直接使寄生二极管产生较大雪崩电流,芯片快速加热过温损坏。另一种是寄生三极管导通,并发生二次击穿?
回复:是的,特别是新一代工艺的MOSFET,基本上是后一种损坏方式:寄生三极管导通。寄生三极管的导通,发生二次击穿并不全是因为雪崩发生,还可能由于dv/dt过高的原因而导致。

3、雪崩损坏都发生在VDS大于额定值的情况?
回复:是的。但是高温条件下,一些大电流的关断,可能在关断过程中,发生寄生三极管导通而损坏,虽然看不到过压的情况,但是作者仍然将其定义为:雪崩UIS损坏。

4、关于(2)中两种情况,什么情况下倾向于第一种发生,什么情况下倾向于第二种发生?
回复:如果单元非常一致,散热非常好均匀,热平衡好,第一种情况发生,早期的平面工艺有时候就会看到这种损坏模式。现在,新的工艺导致单元的密度越来越集中,产生的损坏通常用就是第二种。

UIS的理解,请参考文献: 理解功率MOSFETUIS今日电子:2010.4

作者遇到过很多的工程师问这样的一个问题:如果说UIS的雪崩损坏时,电压通常会达到耐压值的1.2~1.3倍,可以明显看到电压有箝位(通俗说法:波形砍头),那么,对于一个100V的MOSFET,工作在105V是否安全,110V是否安全?如上所述,100V的MOSFET,加上110V的电压,不会损坏,那么,安全的原则是什么呢?
对于设计工程师来说,所要求的就是在最极端的条件下,设计的参数有一定的裕量,也就是从设计的角度来说,保持系统的安全和可靠性,永远都排在最优先的位置。
因此,笔者建议的原则是:在动态的极端条件下,瞬态的电压峰值不要超过MOSFET的额定值。

问题7关于TrenchMOS的SOA, 听说MOSFET在放大区有负温度系数效应,所以容易产生热点。这是否就是MOSFET的二次击穿,但是,看资料MOSFET的Rdson是正温度系数效应,不会产生二次击穿。这一点,一直都没有了解过,能否指点一下,后面再请教详细情况。
回复:平面工艺和Trench工艺的MOSFET都有这个特点,这是MOSFET固有特性。Rdson的正温度系数效应是在完全导通的稳态的条件,才具有这样的特性,可以实现稳态的电流均流,但是,MOSFET在动态开通的过程中,会跨越负温度系数区进入到完全开通的正温度系数区,同样,关断过程中,跨越完全开通的正温度系数区进入负温度系数区。只是因为平面工艺的单元密度非常小,产生局部过流和过热的可能性小,因此热平衡好,相对的,动态经过负温度系数区时,抗热冲击好。通常在设计过程中,要快速的通过此区域,减小热不平衡的产生。

具体内容,参考文献:理解功率MOSFETRds(on)温度系数特性,今日电子:2009.11
应用于线性调节器的中压功率功率MOSFET选择,今日电子:2012.2
功率MOSRds(on)负温度系数对负载开关设计影响,电子技术应用:2010.12

问题8:关于寄生二极管和三极管,如下理解是否正确?下图中,S极并没有和P型层直接接触,那么就不存在寄生二极管,只有寄生三极管。但是这个三极管很容易误导通,所以将P型层也直接连到S级,以消弱三极管效应。那么此时就体现为明显的寄生二极管?

回复:是的,上述的理解是正确的,目前功率MOSFET的S极都和P+连接在一起,很少用图中这样不连接的结构。主要的原因在于:对于内部寄生的三极管,S极和P+连接在一起相当于基级和发射级短路,不连接在一起相当于开路:VCES>>VCEO。这样的内部连接,也导致内部的寄生二极管功能,也连接到外部电路。

问题9关于米勒电容Crss,在你的文档MOSFET的动态参数中,有公式如下:

参考图片,Crss电容是栅极通过氧化层对漏极的电容,对于开关过程,在第2阶段,沟道打开后,Ciss为什么增加了,是什么原因?另外,AON6450规格书上的测试条件是VDS=50V的情况,这个测试的条件基于什么原因?是否可以给出其它条件下的电容值?


回复: Ciss增加的原因是Crss增加,图中,器件导通后,Wdep减小,Crss就增加。对于一个100V的器件,比如:AON6450,由于在米勒平台区,极限的情况VGD将从100V降到10V以内。Crss是一个动态电容,容值随着VDS而变化,而且不是线性关系。
数据表中所采用的测试条件,是行业通常采用的标准,以50%的VDS测试。如果客户有特殊要求,可以提供80%或100%的数据。

问题10功率MOSFET的SOA曲线如何得到的,可以用来作为设计的安全标准吗?
回复:任何一家公司的SOA曲线上,主要有3部分组成:电阻限制区、几条由脉冲功率限制的电流电压直线和最大电压直线。最大电压值就是数据表中的额定值。几条由脉冲功率限制的电流电压直线,实际上是计算值,就是基于数据表中的瞬态热阻、导通电阻以及最大的允许结温计算得到的,而且都是基于TC=25度,TC代表的是封装裸露铜皮的温度,在实际应用中,TC的温度远高于25度,因此,SOA曲线是不能用来作为设计的验证标准。

问题10VGS大于VGS(th),MOSFET导通,MOSFET刚进入米勒平台,是否就算达到了饱和?如果是这样,此时停止向G极供电,假定忽略栅极氧化层的漏电,这时VDS会一直维持比较高压降吗?感觉有点不可思议,因为其饱和以后,Rdson已经降了下来。如果说没有饱和,也感觉说不过去,Rdson和VGS有关,达到10V以后,Rdson已经很小了,压降也应该降下来。如果说压降自动会降下来,那不是说米勒平台后期的充电没有什么用?
回复:VGS大于VGS(th)时,MOSFET开始导通,其刚进入米勒平台,MOSFET都工作在放大区,而且器件都没有完全导通,因为,此时MOSFET导通电阻非常大,D极的电压由整个MOSFET承受,因此电流较小,电流乘上电阻也等于VDS值,也就是D、S极所加的电源电压值。
事实上,MOSFET工作在线性区时,和线性电压调节器,也就是LDO,如LM7805的工作原理相同,如:当输入电压为10V,输出5V,压降就是5V;输入电压12V,输出还是5V,压降是7V,MOSFET相当于调节管,输入电压和输出电压的差值,都由MOSFET来承担。
到了米勒平台区,电流为系统的最大电流,电流不能再增加,那么,VDS的电压开始下降,即使是VDS的电压下降一点点,所产生的电压变化率也非常大,因此,驱动回路的电流,将全部被米勒电容Crss所抽取,此时,就看到了所谓的“米勒平台”,VDS的电压在一定的时间内,维持一个稳定的值,直到VDS完全下降到最小值,VDS的电压变化率为0时,才结束米勒平台区。

问题111、请教一个AOS3401的问题:现在使用AOS3401的导通电阻Rdson作为隔离电阻,用来缓冲热插入移动硬盘的瞬间冲击电流,防止瞬间把主机芯电压拉低,电路图如下,5V_USB是插移动硬盘的地方,+5V_Normal来自主机芯电压。将VGS设计在固定的-1.6V左右,此时的Rdson大约在100mΩ左右,插上移动硬盘瞬间的冲击电流由原来的9A下降到了5A左右,冲击电流持续时间80微秒左右,效果很明显,移动硬盘正常工作时电流约300mA。如果将VGS设计在-2.5V左右,Rdson只有几十mΩ,对冲击电流的抑制作用不大。这个电路的设计原则是什么?

回复:VGS=-1.6V时,可以保证MOSFET导通,注意要考虑电阻阻值的分散性,在最差的条件下,如果使用电阻的精度为10%,VGS电压绝对值:1.3+1.6*20%=1.64V,MOSFET仍然可以工作。如果电阻的精度为15%,考虑到MOSFET的VGS(th)电压的分散性,在一定的条件下,如低温,MOSFET有可能不工作。VGS(th)电压是负温度系数,温度越低,其值越大。

驱动电压的稳定值,要结合输入电压最低值,分压电阻值的精度,VGS(th)和VGS(th)的温度系数等最极端的条件下,来选择合适的分阻电阻的分压比,保证系统的设计要求。同样,PCB布板时,S和D都用大的铜皮连接,如果是多层板,在每层都放上相应大小的的铜皮,用多个10-15mil的过孔连接,散热。


2、AO3401的VGS(th)规格书中标的可以到-1.3V,设置VGS=-1.6V,电压绝对值大于-1.3V,是否该MOS正常导通,应该没有问题吧?现在损耗并不是考虑的问题,0.03V的Rdson的压降对系统没有任何影响。原来使用一个0.1欧姆的氧化膜电阻来做隔离的,但是该电阻体积太大,用这个电路的目的就是想替换这个电阻。由于这个电路中,MOSFET是在电视机开机后一直导通的,在MOSFET一直导通的状态下,来插入移动硬盘的,而不是插入移动硬盘后再打开MOS的,所以觉得调节R45/R46/C18的值不能起到降低冲击电流的作用。希望利用MOSFET的恒流区特性来降低冲击电流,如果把VGS调整到-2.5V以上,对冲击电流的限制作用就非常小了,只能从9A降到8A左右,这样的做法对MOS来说会有问题吗?


回复:事实上,下面的电路是利于MOSFET在开通过程中,较长时间工作在线性区(放大区,也就是恒流区),从而控制上电时瞬态大负载,如热插拨移动硬盘,因为硬盘带有较大的容性负载,切入瞬间形成较大的浪涌电流.如果MOSFET已经导通,后面再插入移动硬盘这样的大容性负载,浪涌电流主要由输出端的大电容来提供,因此MOSFET无法限制浪涌电流。
MOSFET工作在线性区时,电阻远大于完全导通的电阻,因此也可以理解为用电阻抑止浪涌电流。通常,这种负载开关电路,设计时,分压电阻是为了防止VGS的最大电压超过额定的最高电压,串联在G极的电阻调节MOSFET的开通速度。在保证要求的开通速度条件下,VGS不能超过最大额定电压时,可以适当提高电阻值,这样,在正常的工作状态下,MOSFET完全导通后,减小产生的静态损耗。

3、在AO3401规格书的第1页有写operation with gate votages as low as2.5V,是否是要求G极电压必须大于2.5V? VGS必须小于-2.5V?设计VGS=-1.6V有没有问题?如果继续加大VGS到-1V呢?是不是VGS的大小没有关系,只要保证Rdson产生的功耗不要导致MOSFET过热就行,是否正确?
回复:不能那么认为,这句话的含义是:AO3401可以工作在VGS=-2.5V,此时,导通电阻约为120mOhm。如果VGS电压太小,低于阈值电压VGS(th),AO3401可能无法完全开通,无法正常工作。还是建议将VGS设计在-2.5V以上,如-3.5V左右,通过调节(增加)R45/46和C18来降低冲击电流。


问题12使用如下电路,用CPU的GPIO口直接控制一个MOSFET管,MOSFET作为后端负载的开关,这种应用有什么风险?
请下载文档吧
功率MOSFET的应用问题分析.docx


[sub][/sub][sub][/sub][sub][/sub]
收藏收藏11
admin
  • 积分:32503
  • |
  • 主题:2330
  • |
  • 帖子:8891
积分:32503
管理员
  • 2014-7-30 18:36:51
  • 倒数6
 
感谢分享好文!楼主请继续!
胡庄主
  • 积分:2313
  • |
  • 主题:34
  • |
  • 帖子:568
积分:2313
版主
  • 2014-7-30 20:42:02
  • 倒数5
 
好东西,经验之谈啊。
chucheng_lau
  • 积分:919
  • |
  • 主题:1
  • |
  • 帖子:26
积分:919
LV6
高级工程师
  • 2014-7-30 23:04:48
  • 倒数4
 
好东西,很经典。
powercheyne
  • 积分:1579
  • |
  • 主题:83
  • |
  • 帖子:463
积分:1579
LV6
高级工程师
  • 2014-7-31 13:33:46
  • 倒数3
 
好贴,记好。
admin
  • 积分:32503
  • |
  • 主题:2330
  • |
  • 帖子:8891
积分:32503
管理员
  • 2014-8-29 15:53:15
  • 倒数2
 
果断收藏
bei_jxing
  • 积分:872
  • |
  • 主题:5
  • |
  • 帖子:346
积分:872
LV6
高级工程师
最新回复
  • 2014-9-2 12:01:24
  • 倒数1
 
好文,果断下载学习,应用。 刘工之前的文章反复学习,收益颇深,感谢刘工分享好文。
有几个疑问,还请刘工解答;
1-MOSFET 关断过程中,VGS从米勒平台结束后有瞬时振荡,如下图,此振荡是否导致MOSFET 部分CELL重新承受较大的电流,从而降低可靠性?



2-只是因为平面工艺的单元密度非常小,产生局部过流和过热的可能性小,因此热平衡好,相对的,动态经过负温度系数区时,抗热冲击好。
Trech 工艺的热冲击是否相对平面工艺差一些?

热门技术、经典电源设计资源推荐

世纪电源网总部

地 址:天津市南开区黄河道大通大厦8层

电 话:400-022-5587

传 真:(022)27690960

邮 编:300110

E-mail:21dy#21dianyuan.com(#换成@)

世纪电源网分部

广 东:(0755)82437996 /(138 2356 2357)

北 京:(010)69525295 /(15901552591)

上 海:(021)24200688 /(13585599008)

香 港:HK(852)92121212

China(86)15220029145

网站简介 | 网站帮助 | 意见反馈 | 联系我们 | 广告服务 | 法律声明 | 友情链接 | 清除Cookie | 小黑屋 | 不良信息举报 | 网站举报

Copyright 2008-2024 21dianyuan.com All Rights Reserved    备案许可证号为:津ICP备10002348号-2   津公网安备 12010402000296号